def get_iterator(buckets): data_shape = (784, ) impl = train_mnist.get_iterator(data_shape) def get_iterator_impl(args, kv): train, val = impl(args, kv) return (BucketIter(train, buckets), BucketIter(val, buckets)) return get_iterator_impl
import os, sys curr_path = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(curr_path, "../../example/image-classification")) sys.path.append(os.path.join(curr_path, "../../python")) import mxnet as mx import argparse import train_mnist import logging if __name__ == '__main__': args = train_mnist.parse_args() args.batch_size = 100 data_shape = (1, 28, 28) loader = train_mnist.get_iterator(data_shape) kv = mx.kvstore.create(args.kv_store) (train, val) = loader(args, kv) net = train_mnist.get_lenet() head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) mx.model.FeedForward.create(ctx=mx.gpu(kv.rank), kvstore=kv, symbol=net, X=train, eval_data=val, num_epoch=args.num_epochs, learning_rate=args.lr, momentum=0.9, wd=0.00001)
import os, sys curr_path = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(curr_path, "../../example/image-classification")) sys.path.append(os.path.join(curr_path, "../../python")) import mxnet as mx import argparse import train_mnist import logging if __name__ == '__main__': args = train_mnist.parse_args() args.batch_size = 100 data_shape = (1, 28, 28) loader = train_mnist.get_iterator(data_shape) kv = mx.kvstore.create(args.kv_store) (train, val) = loader(args, kv) net = train_mnist.get_lenet() head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s' logging.basicConfig(level=logging.DEBUG, format=head) mx.model.FeedForward.create( ctx = mx.gpu(kv.rank), kvstore = kv, symbol = net, X = train, eval_data = val, num_epoch = args.num_epochs, learning_rate = args.lr, momentum = 0.9, wd = 0.00001)