예제 #1
0
def evaluate_model_fast(model_name,path):
    model = keras.models.load_model(model_name)
    images,labels,files = train_model.load_images_classes(path)
    
    predictions = []
    errors = []
    num_classes = len(train_model.get_classes())
    confusion_matrix = np.zeros((num_classes,num_classes))

    print("Evaluating model (fast version) on %i instances..." % images.shape[0])
    start = time.time()    
    prediction_probs = model.predict(images)
    print("Elased time: %f seconds" % (time.time()-start))

    for i in range(0,images.shape[0]):
        predicted_class = np.argmax(prediction_probs[i,:])
        predictions.append(predicted_class)
        label = int(labels[i])
        confusion_matrix[label,predicted_class] += 1
        if label == predicted_class:
            errors.append(0)
        else:
            save_error(label,predicted_class,files[i])
            errors.append(1)

    print_statistics(confusion_matrix)
예제 #2
0
def evaluate_model(model_name, path):
    model = keras.models.load_model(model_name)

    images,labels,files = train_model.load_images_classes(path)

    predictions = []
    errors = []
    num_classes = len(train_model.get_classes())
    confusion_matrix = np.zeros((num_classes,num_classes))
    print("Evaluating model...")
    if os.path.isdir("./errors"):
        shutil.rmtree("./errors")    
    
    for i in range(0,images.shape[0]):
        if i % 1000 == 0:
            print(i)
        prediction_probs = predict_image_set_with_augmentation(images[i:i+1,:,:,:],model)[0]
        predicted_class = np.argmax(prediction_probs)
        predictions.append(predicted_class)
        label = int(labels[i])
        confusion_matrix[label,predicted_class] += 1
        if label == predicted_class:
            errors.append(0)
        else:
            #save_error(label,predicted_class,files[i])
            errors.append(1)
    print_statistics(confusion_matrix)
def annotate_and_save_per_class(annotations, d, image_file, model_name, precision_mode):
    base_image_file = image_file.replace('Results/seeds/annotations_trt', 'Data')
    img = Image.open(base_image_file)
    classes = train_model.get_classes()
    labels = load_labels(image_file)
    classes_image = []
    
    for c in range(0,len(classes)):
        new_img = img.copy()
        draw = ImageDraw.Draw(new_img, mode='RGBA')
        for i in range(0,len(annotations)):
            color,predicted_class = utils.get_color_probs(annotations[i][0])
            classes_image.append(predicted_class)
            if predicted_class==c:
                x,y = (annotations[i][1], annotations[i][2])
                draw.rectangle((x-d/2, y-d/2, x+d/2, y+d/2), fill=color)
        for (c_name,x,y) in labels:
            solid_color = utils.get_color(classes.index(c_name),255)
            draw.ellipse((x-6, y-6, x+6, y+6), fill=solid_color)
            
        new_image_file = image_file.replace('.' + image_format, '_annotated_by_' + precision_mode + '_' + model_name + '_for_class_%s.jpg' % classes[c])
        new_img.save(new_image_file)
        print("Saved %s" % new_image_file)
        
    return classes_image
예제 #4
0
def print_statistics(confusion_matrix):
    accuracy = np.trace(confusion_matrix)/np.sum(confusion_matrix)
    print("Accuracy = %.4f (on %i test instances)" % (accuracy,np.sum(confusion_matrix)))

    classes = train_model.get_classes()
    for i in range(0,len(classes)):
        recall_class = confusion_matrix[i,i]/np.sum(confusion_matrix[i,:])
        precision_class = confusion_matrix[i,i]/np.sum(confusion_matrix[:,i])
        print("Class %s precision/recall: %0.4f/%0.4f" % (classes[i],precision_class,recall_class))

    print("Confusion matrix (rows = true class, columns = predicted class):\n")
    for i in range(0,6):
        for j in range(0,6):
            s = "%i" % int(confusion_matrix[i,j])
            while len(s) < 6:
                s = " "+s
            sys.stdout.write(s)
        sys.stdout.write("\n")
예제 #5
0
def annotations_from_inference(
        inference_results_fp='./Inferences/trt_model_predictions.npy',
        image_fp='./Data/201x201_TestSetMidFull/DSC03534.JPG',
        save_annotations=False):
    """ Takes a (numpy) array and creates annotations from it.
    
    @Args
    inference_results_fp (str) : ./path/to/inference.npy
    image_fp (str) : ./path/to/image.jpg
    
    @Returns
    
    """
    img = Image.open(image_fp)
    sx, sy = img.size

    inference_results = np.load(inference_results_fp)

    print("Computing annotations...")
    annotations = []
    d = 4
    for x in range(100, sx - 101, d):
        for y in range(100, sy - 101, d):
            x0 = int(round(float(x - 100) / 4) + 15)
            y0 = int(round(float(y - 100) / 4) + 15)
            probs_flex = np.squeeze(inference_results[0, y0, x0, :])
            annotations.append((probs_flex, x, y))
    if save_annotations:
        annotate_and_save(annotations, d, image_fp)
        annotate_and_save_per_class(annotations, d, image_fp)

    labels = load_labels(image_fp)
    confusion_matrix = np.zeros((6, 6))
    for (c_name, x, y) in labels:
        if 100 <= x < sx - 101 and 100 <= y < sy - 101:
            x0 = int(round(float(x - 100) / 4) + 15)
            y0 = int(round(float(y - 100) / 4) + 15)
            probs_flex = np.squeeze(inference_results[0, y0, x0, :])

            predicted_class = np.argmax(probs_flex)
            c = train_model.get_classes().index(c_name)
            confusion_matrix[c, predicted_class] += 1
    evaluate_model.print_statistics(confusion_matrix)
    return confusion_matrix
def predict_image(model, image_file, model_name='', precision_mode='FP32'):

    img = Image.open(image_file)
    sx,sy = img.size
    print("Predicting for image %s (%i x %i pixel)" % (image_file, sx, sy))
    d = 4
    annotations = []
    for x in range(0, sx-201, d):
        crops = []
        print(x)
        for y in range(0, sy-201, d):
            crop = img.crop((x, y, x+201, y+201))
            crops.append((crop, x+100, y+100))
        crops_np = np.zeros((len(crops), 201, 201, 3))
        for i in range(0,len(crops)):
            crops_np[i, :, :, :] = np.array(crops[i][0])/255.0
    
        print("Predicting on %i crops" % crops_np.shape[0])
        start = time.time()
        predictions = model.predict(crops_np)
        elapsed = time.time() - start
        print("Took %f seconds per crop" % (elapsed/float(crops_np.shape[0])))
        for i in range(0,len(crops)):
            annotations.append((predictions[i, :],crops[i][1], crops[i][2]))
    
    annotate_and_save(annotations, d, image_file, model_name, precision_mode)
    annotate_and_save_per_class(annotations, d, image_file, model_name, precision_mode)
    labels = load_labels(image_file)
    confusion_matrix = np.zeros((num_classes,num_classes))
    for (c_name,x,y) in labels:
        if 100 <= x < sx-101 and 100 <= y < sy-201:
            crop = img.crop((x-100, y-100, x+101, y+101))
            crop_np = np.array(crop)/255.0
            probs = model.predict(crop_np.reshape(1, 201, 201, 3))
            predicted_class = np.argmax(probs)
            c = train_model.get_classes().index(c_name)
            confusion_matrix[c, predicted_class] += 1

    return confusion_matrix
예제 #7
0
def save_error(label,prediction,file):
    classes = train_model.get_classes()
    path = "./errors/%s_classified_as_%s" % (classes[label],classes[prediction])
    if not os.path.isdir(path):
        os.makedirs(path)
    shutil.copyfile(file,path+"/"+os.path.basename(file))
def main(seed, filter_, num_classes, setup, model_name, images_dir, precision_mode, test):
    """ The main method is responsible for running the generation of confusion matrices,
    the time taken for inferences, and save them. It iterates over all seeds and filters,
    in our case, seeds ranges from 1 to 5, and filters from 2-4 to 16-32.
    
    Args:
        seed (str): The seed that generated the model loaded
        filter_ (list): List of strings, containing  the first and second filter used, such as ['2','4']
        num_classes (int): Number of classes of our problem.
        setup (dict): Dictionary that maps the model setup to its filter size
        model_name (str): Name of model to be used, eg `resnet_manual_highres_center_only_f1_2_f2_4`
        images_dir (str): Path to the directory where the images are located
        precision_mode (str): precision_mode (str): either 'FP32' or 'FP16'
    Returns:
        None
    """
    f1, f2 = filter_
    model_name = 'flex_random_seed_{}_resnet_manual_highres_center_only_f1_{}_f2_{}'.format(seed, f1, f2)
    frozen_graph_filepath = './Models/Frozen_graphs/{}_{}/'.format(f1,f2) + model_name + '_frozen_graph.pb'
    frozen_graph, x_tensor, y_tensor = trt_frozen_graph_and_tensors(
        model_name=model_name, 
        frozen_graph_filepath=frozen_graph_filepath, 
        precision_mode=precision_mode
        )

    elapsed_time_full_dataset = []
    sum_of_confusion_matrices = np.zeros((6, 6))
    
    with tf.compat.v1.Session(graph=frozen_graph) as sess:
        for image_file in [img for img in os.listdir(images_dir) if img.endswith('.JPG')]:

            img = Image.open(images_dir + image_file)
            sx,sy = img.size

            print("Image size is %i x %i" % (sx,sy)) # sx = 4912, sy = 3264
            print("Loading image %s" % image_file)

            img_np = np.array(img)/255.0
            del img

            print("Predicting for image %s (%i x %i pixel)" % (image_file,sx,sy))

            start = time.time()
            predictions_flex = sess.run(y_tensor, feed_dict={x_tensor:np.expand_dims(img_np, 0)})
            elapsed = time.time() - start
            elapsed_time_full_dataset.append(elapsed)
            del img_np #deleting afterwards to not take the deleting time into account

            print("Prediction took %f seconds (inference on full image)" % elapsed)
            print("Merging predictions")
            # merge the predictions on the quarter images
            predictions_flex_combined = np.zeros(predictions_flex.shape)

            elapsed = time.time()-start
            if embedded_version:
                print("Prediction took %f seconds (inference on split up image)" % elapsed)

            if embedded_version:
                predictions_flex = predictions_flex_combined

            if save_annotations:
                print("Computing annotations...")
                annotations = []
                d = 4
                for x in range(100, sx-101, d):
                    for y in range(100, sy-101, d):
                        x0 = int(round(float(x-100)/4) + 15)
                        y0 = int(round(float(y-100)/4) + 15)
                        probs_flex = np.squeeze(predictions_flex[0, y0, x0, :])
                        annotations.append((probs_flex, x, y))

                if test: # add a prefix for test to not replace real experiments
                    model_name = 'TEST_' + model_name

                # saving annotations
                annotation_dir = images_dir.replace('Data', 'Results/seeds/annotations_trt') + image_file
                annotate_and_save(annotations, d, annotation_dir, model_name, precision_mode)
                classes_image = annotate_and_save_per_class(
                    annotations, 
                    d, 
                    annotation_dir, 
                    model_name, 
                    precision_mode
                )

            labels = load_labels(annotation_dir)
            confusion_matrix = np.zeros((num_classes, num_classes))
            for (c_name, x, y) in labels:
                if 100 <= x < sx-101 and 100 <= y < sy-101:
                    x0 = int(round(float(x-100)/4) + 15 )
                    y0 = int(round(float(y-100)/4) + 15)
                    probs_flex = np.squeeze(predictions_flex[0, y0, x0, :])

                    predicted_class = np.argmax(probs_flex)
                    c = train_model.get_classes().index(c_name)
                    confusion_matrix[c, predicted_class] += 1
            print(confusion_matrix)
            sum_of_confusion_matrices += confusion_matrix

    print(sum_of_confusion_matrices)
    sum_of_cm_fp = './Results/seeds/preds_trt/{}/{}_{}/sum_of_cm_'\
                    .format(precision_mode.lower(), f1,f2) + model_name + '_fp32.npy'
    elapsed_time_fp = './Results/seeds/elapsed_trt/{}/{}_{}/time_taken_'\
                    .format(precision_mode.lower(), f1,f2) + model_name + '_fp32.npy'


    np.save(sum_of_cm_fp, sum_of_confusion_matrices)
    np.save(elapsed_time_fp, elapsed_time_full_dataset)
    tf.reset_default_graph()   
def predict_image_highres(frozen_graph, x_tensor, y_tensor, image_file, model_name='', precision_mode='FP32'):

    img = Image.open(image_file)
    sx,sy = img.size
    print("Image size is %i x %i" % (sx, sy)) # sx = 4912, sy = 3264
    print("Loading image %s" % image_file)
    img_np = np.array(img)/255.0
    print(img_np.shape)
    if embedded_version:
        img = None
    

    print("Predicting for image %s (%i x %i pixel)" % (image_file, sx, sy))
    

    if not embedded_version:
        with tf.Session(graph=frozen_graph) as sess:
            start = time.time()
            predictions_flex = sess.run(y_tensor, feed_dict={x_tensor:np.expand_dims(img_np, 0)})
            print('predictions_flex.shape')
            print(predictions_flex.shape)
            elapsed = time.time() - start
        del img_np
        print("Prediction took %f seconds (inference on full image)" % elapsed)

    print("Merging predictions")
    # merge the predictions on the quarter images
    predictions_flex_combined = np.zeros(predictions_flex.shape)

    elapsed = time.time() - start
    if embedded_version:
        print("Prediction took %f seconds (inference on split up image)" % elapsed)

    if embedded_version:
        predictions_flex = predictions_flex_combined

    if save_annotations:
        print("Computing annotations...")
        annotations = []
        d = 4
        for x in range(100, sx-101, d):
            for y in range(100, sy-101, d):
                x0 = int(round(float(x-100)/4) + 15)
                y0 = int(round(float(y-100)/4) + 15)
                probs_flex = np.squeeze(predictions_flex[0, y0, x0, :])
                annotations.append((probs_flex, x, y))
        annotate_and_save(annotations, d, image_file, model_name, precision_mode)
        classes_image = annotate_and_save_per_class(annotations, d, image_file, model_name, precision_mode)


    labels = load_labels(image_file)
    confusion_matrix = np.zeros((num_classes, num_classes))
    for (c_name, x, y) in labels:
        if 100 <= x < sx-101 and 100 <= y < sy-101:
            x0 = int(round(float(x-100)/4)+15)
            y0 = int(round(float(y-100)/4)+15)
            probs_flex = np.squeeze(predictions_flex[0, y0, x0, :])

            predicted_class = np.argmax(probs_flex)
            c = train_model.get_classes().index(c_name)
            confusion_matrix[c, predicted_class] += 1
    if save_annotations:
        return confusion_matrix, classes_image
    else:
        return confusion_matrix