def simu_fit_test(arma_params,
                  ll,
                  order,
                  n_train_samples,
                  n_test_samples,
                  data='arma',
                  embedding='lead_lag'):
    inputSig = InputSig(data, embedding, order, ll=ll, arma_params=arma_params)

    train_X, train_y = get_input_X_y(inputSig,
                                     n_train_samples,
                                     start_row,
                                     n_processes=n_processes)
    max_train_X = np.amax(np.absolute(train_X), axis=0)
    train_X = train_X / max_train_X

    test_X, test_y = get_input_X_y(inputSig,
                                   n_test_samples,
                                   start_row + n_train_samples,
                                   n_processes=n_processes)
    test_X = test_X / max_train_X

    # Fit and evaluate algorithm
    learnSig = LearnSig(algo, inputSig, n_processes=n_processes)
    learnSig.train(train_X, train_y)
    test_results = learnSig.evaluate(test_X, test_y, metrics=['error_l2'])

    return (test_results['error_l2'])
                               n_processes=n_processes)
valid_X = valid_X / max_train_X
test_X = test_X / max_train_X

# Fit and evaluate algorithm

learnSig = LearnSig(algo, inputSig, n_processes=n_processes)

# Train with custom parameters, for example for Urban Sound best random forest
#custom_params={'n_estimators':460,'max_depth':30,'max_features':500}
#learnSig.train(
#	train_X,train_y,valid_X=valid_X,valid_y=valid_y,params=custom_params)

learnSig.train(train_X, train_y, valid_X=valid_X, valid_y=valid_y)
test_results = learnSig.evaluate(test_X,
                                 test_y,
                                 metrics=['accuracy', 'f1_score'])
print(test_results)

# Write the results in a separate text file.
results_path = os.path.join(results_dir, learnSig.model_name + ".txt")
file = open(results_path, "w")

file.write("Dataset: %s \n" % (data))
file.write("Algorithm: %s \n" % (algo))
file.write("Embedding: %s \n" % (embedding))
file.write("Signature order: %i \n" % (order))

file.write("Number of training samples: %i \n" % (n_train_samples))
file.write("Number of validation samples: %i \n" % (n_valid_samples))
file.write("Number of test samples: %i \n" % (n_test_samples))
예제 #3
0
                                         n_processes=n_processes)
        valid_X = valid_X / max_train_X

        test_X, test_y = get_input_X_y(inputSig,
                                       n_test_samples,
                                       start_row + n_train_samples +
                                       n_valid_samples,
                                       n_processes=n_processes)
        valid_X = valid_X / max_train_X
        test_X = test_X / max_train_X

        for algo in algo_list:
            # Fit and evaluate algorithm
            learnSig = LearnSig(algo, inputSig, n_processes=n_processes)
            learnSig.train(train_X, train_y, valid_X=valid_X, valid_y=valid_y)
            test_results = learnSig.evaluate(test_X, test_y, metrics=metrics)
            print(test_results)

            results_df = results_df.append(
                {
                    'embedding': embedding,
                    'algo': algo,
                    'order': order,
                    'n_features': train_X.shape[1]
                },
                ignore_index=True)
            print(results_df)
            for metric in metrics:
                results_df[metric].iloc[-1] = test_results[metric]

            # Write the results in a separate text file.