예제 #1
0
 def test_getunpaired(self):
     a, ac = utils.MimickDataset().get_unpaired_ultrasound_dataset(domain='iq', batch_size=1)
     b, bc = utils.MimickDataset().get_unpaired_ultrasound_dataset(domain='dtce', batch_size=1)
     for x,z1 in a: break
     for y,z2 in b: break
     assert x is not None
     assert y is not None
     assert z1 is not None
     assert z2 is not None
예제 #2
0
 def test_shape(self):
     mimick_dataset = utils.MimickDataset(shape=(256, 256))
     train_dataset, train_count = mimick_dataset.get_paired_ultrasound_dataset(batch_size=1)
     for x,y,z in train_dataset: break
     assert x.shape == (1, 256, 256, 1)
     assert y.shape == (1, 256, 256, 1)
     
예제 #3
0
 def test_getpaired_v2(self):
     mimick_dataset = utils.MimickDataset()
     train_dataset, train_count = mimick_dataset.get_paired_ultrasound_dataset(
         csv='gs://duke-research-us/mimicknet/data/training-v2.csv',
         batch_size=1
     )
     for x,y,z in train_dataset: break
     assert x.shape == y.shape
예제 #4
0
 def test_getunpaired_v2(self):
     a, ac = utils.MimickDataset().get_unpaired_ultrasound_dataset(
         domain='iq', 
         batch_size=1,
         csv='gs://duke-research-us/mimicknet/data/training-v2-verasonics.csv'
     )
     b, bc = utils.MimickDataset().get_unpaired_ultrasound_dataset(
         domain='dtce', 
         batch_size=1,
         csv='gs://duke-research-us/mimicknet/data/training-v2-clinical.csv'
     )
     for x,z1 in a: break
     for y,z2 in b: break
     assert x is not None
     assert y is not None
     assert z1 is not None
     assert z2 is not None
예제 #5
0
 def test_getpaired(self):
     mimick_dataset = utils.MimickDataset()
     train_dataset, train_count = mimick_dataset.get_paired_ultrasound_dataset(batch_size=1)
     for x,y,z in train_dataset: break
     assert x.shape == y.shape
예제 #6
0
See the License for the specific language governing permissions and
limitations under the License.
"""

import tensorflow as tf
from trainer.config import config
from trainer import utils
from trainer import models
from trainer import callbacks

LOG_DIR = config.job_dir
MODEL_DIR = config.model_dir

# Load Data (Build your custom data loader and replace below)
mimick = utils.MimickDataset(clipping=(config.clipping, 0),
                             image_dir=config.image_dir,
                             shape=(config.in_h, config.in_w))

iq_dataset, iq_count = mimick.get_unpaired_ultrasound_dataset(
    domain='iq', csv=config.train_das_csv, batch_size=config.bs)
iq_dataset = iq_dataset.map(lambda x, z: x)

dtce_dataset, dtce_count = mimick.get_unpaired_ultrasound_dataset(
    domain='dtce', csv=config.train_clinical_csv, batch_size=config.bs)
dtce_dataset = dtce_dataset.map(lambda x, z: x)

validation_dataset, val_count = mimick.get_paired_ultrasound_dataset(
    csv=config.validation_csv, batch_size=config.bs)
validation_dataset = validation_dataset.map(lambda x, y, z: (x, y))

test_dataset, test_count = mimick.get_paired_ultrasound_dataset(