def train_pie(args, dataset, model, simulator): """ PIE training """ trainer = ForwardTrainer(model) if simulator.parameter_dim( ) is None else ConditionalForwardTrainer( model) if args.scandal is None else SCANDALForwardTrainer(model) common_kwargs, scandal_loss, scandal_label, scandal_weight = make_training_kwargs( args, dataset) callbacks_ = [ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)) ] if simulator.is_image(): callbacks_.append( callbacks.plot_sample_images( create_filename("training_plot", None, args), context=None if simulator.parameter_dim() is None else torch.zeros(30, simulator.parameter_dim()))) callbacks_.append( callbacks.plot_reco_images( create_filename("training_plot", "reco_epoch", args))) logger.info("Starting training PIE on NLL") learning_curves = trainer.train( loss_functions=[losses.nll] + scandal_loss, loss_labels=["NLL"] + scandal_label, loss_weights=[args.nllfactor * nat_to_bit_per_dim(args.datadim)] + scandal_weight, epochs=args.epochs, callbacks=callbacks_, forward_kwargs={"mode": "pie"}, initial_epoch=args.startepoch, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T return learning_curves
def train_flow(args, dataset, model, simulator): """ AF training """ trainer = ManifoldFlowTrainer(model) if simulator.parameter_dim( ) is None else ConditionalManifoldFlowTrainer(model) logger.info("Starting training standard flow on NLL") common_kwargs = { "dataset": dataset, "batch_size": args.batchsize, "initial_lr": args.lr, "scheduler": optim.lr_scheduler.CosineAnnealingLR, "clip_gradient": args.clip, "validation_split": args.validationsplit, } if args.weightdecay is not None: common_kwargs["optimizer_kwargs"] = { "weight_decay": float(args.weightdecay) } callbacks_ = [ callbacks.save_model_after_every_epoch( create_filename("checkpoint", None, args)[:-3] + "_epoch_{}.pt") ] if simulator.is_image(): callbacks_.append( callbacks.plot_sample_images( create_filename("training_plot", None, args))) learning_curves = trainer.train(loss_functions=[losses.nll], loss_labels=["NLL"], loss_weights=[args.nllfactor], epochs=args.epochs, callbacks=callbacks_, **common_kwargs) learning_curves = np.vstack(learning_curves).T return learning_curves
def train_manifold_flow_sequential(args, dataset, model, simulator): """ Sequential MFMF-M/D training """ assert not args.specified if simulator.parameter_dim() is None: trainer1 = ForwardTrainer(model) trainer2 = ForwardTrainer(model) else: trainer1 = ConditionalForwardTrainer(model) if args.scandal is None: trainer2 = ConditionalForwardTrainer(model) else: trainer2 = SCANDALForwardTrainer(model) common_kwargs, scandal_loss, scandal_label, scandal_weight = make_training_kwargs( args, dataset) callbacks1 = [ callbacks.save_model_after_every_epoch( create_filename("checkpoint", "A", args)), callbacks.print_mf_latent_statistics(), callbacks.print_mf_weight_statistics() ] callbacks2 = [ callbacks.save_model_after_every_epoch( create_filename("checkpoint", "B", args)), callbacks.print_mf_latent_statistics(), callbacks.print_mf_weight_statistics() ] if simulator.is_image(): callbacks1.append( callbacks.plot_sample_images( create_filename("training_plot", "sample_epoch_A", args), context=None if simulator.parameter_dim() is None else torch.zeros(30, simulator.parameter_dim()), )) callbacks2.append( callbacks.plot_sample_images( create_filename("training_plot", "sample_epoch_B", args), context=None if simulator.parameter_dim() is None else torch.zeros(30, simulator.parameter_dim()), )) callbacks1.append( callbacks.plot_reco_images( create_filename("training_plot", "reco_epoch_A", args))) callbacks2.append( callbacks.plot_reco_images( create_filename("training_plot", "reco_epoch_B", args))) logger.info("Starting training MF, phase 1: manifold training") learning_curves = trainer1.train( loss_functions=[losses.smooth_l1_loss if args.l1 else losses.mse] + ([] if args.uvl2reg is None else [losses.hiddenl2reg]), loss_labels=["L1" if args.l1 else "MSE"] + ([] if args.uvl2reg is None else ["L2_lat"]), loss_weights=[args.msefactor] + ([] if args.uvl2reg is None else [args.uvl2reg]), epochs=args.epochs // 2, parameters=list(model.outer_transform.parameters()) + list(model.encoder.parameters()) if args.algorithm == "emf" else list( model.outer_transform.parameters()), callbacks=callbacks1, forward_kwargs={ "mode": "projection", "return_hidden": args.uvl2reg is not None }, initial_epoch=args.startepoch, **common_kwargs, ) learning_curves = np.vstack(learning_curves).T logger.info("Starting training MF, phase 2: density training") learning_curves_ = trainer2.train( loss_functions=[losses.nll] + scandal_loss, loss_labels=["NLL"] + scandal_label, loss_weights=[ args.nllfactor * nat_to_bit_per_dim(args.modellatentdim) ] + scandal_weight, epochs=args.epochs - (args.epochs // 2), parameters=list(model.inner_transform.parameters()), callbacks=callbacks2, forward_kwargs={"mode": "mf-fixed-manifold"}, initial_epoch=args.startepoch - args.epochs // 2, **common_kwargs, ) learning_curves = np.vstack( (learning_curves, np.vstack(learning_curves_).T)) return learning_curves