def training_loop(
    G_args                  = {},       # Options for generator network.
    D_args                  = {},       # Options for discriminator network.
    G_opt_args              = {},       # Options for generator optimizer.
    D_opt_args              = {},       # Options for discriminator optimizer.
    loss_args               = {},       # Options for loss 
    dataset_args            = {},       # Options for dataset.load_dataset().
    sched_args              = {},       # Options for train.TrainingSchedule.
    grid_args               = {},       # Options for train.setup_snapshot_image_grid().
    savenames               = None,   # Model name
    tf_config               = {},       # Options for tflib.init_tf().
    ema_start_kimg          = None,     # Start of the exponential moving average. Default to the half-life period.
    G_ema_kimg              = 10,       # Half-life of the exponential moving average of generator weights.
    minibatch_repeats       = 4,        # Number of minibatches to run before adjusting training parameters.
    lazy_regularization     = False,    # Perform regularization as a separate training step?
    G_reg_interval          = 4,        # How often the perform regularization for G? Ignored if lazy_regularization=False.
    D_reg_interval          = 4,        # How often the perform regularization for D? Ignored if lazy_regularization=False
    reset_opt_for_new_lod   = True,     # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced?
    total_kimg              = 25000,    # Total length of the training, measured in thousands of real images.
    mirror_augment          = False,    # Enable mirror augment?
    mirror_augment_v        = False,  # Enable mirror augment vertically?
    drange_net              = [-1,1],   # Dynamic range used when feeding image data to the networks.
    image_snapshot_ticks    = 50,       # How often to save image snapshots? None = only save 'reals.png' and 'fakes-init.png'.
    network_snapshot_ticks  = 50,       # How often to save network snapshots? None = only save 'networks-final.pkl'.
    save_tf_graph           = False,    # Include full TensorFlow computation graph in the tfevents file?
    save_weight_histograms  = False,    # Include weight histograms in the tfevents file?
    resume_pkl              = None,     # Network pickle to resume training from, None = train from scratch.
    resume_kimg             = 0.0,      # Assumed training progress at the beginning. Affects reporting and training schedule.
    resume_time             = 0.0,      # Assumed wallclock time at the beginning. Affects reporting.
    resume_with_new_nets    = False):   # Construct new networks according to G_args and D_args before resuming training?

    if ema_start_kimg is None:
        ema_start_kimg = G_ema_kimg

    # Initialize dnnlib and TensorFlow.
    tflib.init_tf(tf_config)
    num_gpus = dnnlib.submit_config.num_gpus

    # Load training set.
    training_set = dataset.load_dataset(verbose=True, **dataset_args)
    resolution = training_set.resolution
    ext = 'png' if training_set.shape[0] == 4 else 'jpg'
    print('.. model res', resolution, 'saving', ext)
    
    grid_size, grid_reals, grid_labels = misc.setup_snapshot_image_grid(training_set, **grid_args)
    misc.save_image_grid(grid_reals, dnnlib.make_run_dir_path('_reals.%s'%ext), drange=training_set.dynamic_range, grid_size=grid_size)

    # Construct or load networks.
    with tf.device('/gpu:0'):
        if resume_pkl is None or resume_with_new_nets:
            print(' Constructing networks...')
            G = tflib.Network('G', num_channels=training_set.shape[0], resolution=resolution, label_size=training_set.label_size, **G_args)
            D = tflib.Network('D', num_channels=training_set.shape[0], resolution=resolution, label_size=training_set.label_size, **D_args)
            Gs = G.clone('Gs')
        if resume_pkl is not None:
            if os.path.isdir(resume_pkl):
                resume_pkl, resume_kimg = misc.locate_latest_pkl(resume_pkl)
            print(' Loading networks from "%s", kimg %.3g' % (resume_pkl, resume_kimg))
            rG, rD, rGs = misc.load_pkl(resume_pkl)
            if resume_with_new_nets:
                G.copy_vars_from(rG)
                D.copy_vars_from(rD)
                Gs.copy_vars_from(rGs)
            else:
                G, D, Gs = rG, rD, rGs

    # Print layers if needed and generate initial image snapshot
    # G.print_layers(); D.print_layers()
    sched = training_schedule(cur_nimg=total_kimg*1000, training_set=training_set, **sched_args)
    grid_latents = np.random.randn(np.prod(grid_size), *G.input_shape[1:])
    grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch_gpu)
    # misc.save_image_grid(grid_fakes, dnnlib.make_run_dir_path('fakes_init.%s'%ext), drange=drange_net, grid_size=grid_size)

    # Setup training inputs.
    print(' Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device('/cpu:0'):
        lod_in               = tf.placeholder(tf.float32, name='lod_in', shape=[])
        lrate_in             = tf.placeholder(tf.float32, name='lrate_in', shape=[])
        G_lrate_in           = tf.placeholder(tf.float32, name='G_lrate_in', shape=[])
        D_lrate_in           = tf.placeholder(tf.float32, name='D_lrate_in', shape=[])
        minibatch_size_in    = tf.placeholder(tf.int32, name='minibatch_size_in', shape=[])
        minibatch_gpu_in     = tf.placeholder(tf.int32, name='minibatch_gpu_in', shape=[])
        minibatch_multiplier = minibatch_size_in // (minibatch_gpu_in * num_gpus)
        Gs_beta              = 0.5 ** tf.div(tf.cast(minibatch_size_in, tf.float32), G_ema_kimg * 1000.0) if G_ema_kimg > 0.0 else 0.0
        run_D_reg_in         = tf.placeholder(tf.bool, name='run_D_reg', shape=[])
        Gs_beta_mul_in       = tf.placeholder(tf.float32, name='Gs_beta_in', shape=[])

    # Setup optimizers.
    G_opt_args = dict(G_opt_args)
    D_opt_args = dict(D_opt_args)
    G_opt_args['learning_rate'] = G_lrate_in
    D_opt_args['learning_rate'] = D_lrate_in
    for args in [G_opt_args, D_opt_args]:
        args['minibatch_multiplier'] = minibatch_multiplier
    G_opt = tflib.Optimizer(name='TrainG', **G_opt_args)
    D_opt = tflib.Optimizer(name='TrainD', **D_opt_args)

    # Build training graph for each GPU.
    for gpu in range(num_gpus):
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):
            with tf.name_scope('DataFetch'):
                reals_read, labels_read = training_set.get_minibatch_tf()
                reals_read, labels_read = process_reals(reals_read, labels_read, lod_in, mirror_augment, mirror_augment_v, training_set.dynamic_range, drange_net)

            # Create GPU-specific shadow copies of G and D.
            G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow')
            D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')

            # Evaluate loss functions.
            lod_assign_ops = []
            if 'lod' in G_gpu.vars: lod_assign_ops += [tf.assign(G_gpu.vars['lod'], lod_in)]
            if 'lod' in D_gpu.vars: lod_assign_ops += [tf.assign(D_gpu.vars['lod'], lod_in)]
            with tf.control_dependencies(lod_assign_ops):
                with tf.name_scope('loss'):
                    G_loss, D_loss, D_reg = dnnlib.util.call_func_by_name(G=G_gpu, D=D_gpu, training_set=training_set, minibatch_size=minibatch_gpu_in, reals=reals_read, real_labels=labels_read, **loss_args)

            # Register gradients.
            if not lazy_regularization:
                if D_reg is not None: D_loss += D_reg
            else:
                if D_reg is not None: D_loss = tf.cond(run_D_reg_in, lambda: D_loss + D_reg * D_reg_interval, lambda: D_loss)
            G_opt.register_gradients(tf.reduce_mean(G_loss), G_gpu.trainables)
            D_opt.register_gradients(tf.reduce_mean(D_loss), D_gpu.trainables)

    # Setup training ops.
    Gs_update_op = Gs.setup_as_moving_average_of(G, beta=Gs_beta * Gs_beta_mul_in)
    with tf.control_dependencies([Gs_update_op]):
        G_train_op = G_opt.apply_updates()
    D_train_op = D_opt.apply_updates()

    # Finalize graph.
    with tf.device('/gpu:0'):
        try:
            peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse()
        except tf.errors.NotFoundError:
            peak_gpu_mem_op = tf.constant(0)
    tflib.init_uninitialized_vars()

    # print('Initializing logs...')
    summary_log = tf.summary.FileWriter(dnnlib.make_run_dir_path())
    if save_tf_graph:
        summary_log.add_graph(tf.get_default_graph())
    if save_weight_histograms:
        G.setup_weight_histograms(); D.setup_weight_histograms()

    print(' Training for %d kimg (%d left) \n' % (total_kimg, total_kimg-resume_kimg))
    dnnlib.RunContext.get().update('', cur_epoch=resume_kimg, max_epoch=total_kimg)
    maintenance_time = dnnlib.RunContext.get().get_last_update_interval()
    cur_nimg = int(resume_kimg * 1000)
    cur_tick = -1
    tick_start_nimg = cur_nimg
    prev_lod = -1.0
    running_mb_counter = 0
    while cur_nimg < total_kimg * 1000:
        if dnnlib.RunContext.get().should_stop(): break

        # Choose training parameters and configure training ops.
        sched = training_schedule(cur_nimg=cur_nimg, training_set=training_set, **sched_args)
        assert sched.minibatch_size % (sched.minibatch_gpu * num_gpus) == 0
        training_set.configure(sched.minibatch_gpu)
        if reset_opt_for_new_lod:
            if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil(sched.lod) != np.ceil(prev_lod):
                G_opt.reset_optimizer_state(); D_opt.reset_optimizer_state()
        prev_lod = sched.lod

        # Run training ops.
        feed_dict = {lod_in: sched.lod,
            G_lrate_in: sched.G_lrate, D_lrate_in: sched.D_lrate,
            minibatch_size_in: sched.minibatch_size, minibatch_gpu_in: sched.minibatch_gpu,
            Gs_beta_mul_in: 1 if cur_nimg >= ema_start_kimg * 1000 else 0,
        }
        for _repeat in range(minibatch_repeats):
            rounds = range(0, sched.minibatch_size, sched.minibatch_gpu * num_gpus)
            run_D_reg = (lazy_regularization and running_mb_counter % D_reg_interval == 0)
            feed_dict[run_D_reg_in] = run_D_reg
            cur_nimg += sched.minibatch_size
            running_mb_counter += 1

            # Fast path without gradient accumulation.
            for _ in rounds:
                tflib.run(G_train_op, feed_dict)
                tflib.run(D_train_op, feed_dict)

        # Perform maintenance tasks once per tick.
        done = (cur_nimg >= total_kimg * 1000)
        if cur_tick < 0 or cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done:
            cur_tick += 1
            cur_time = time.time()
            tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0
            tick_start_nimg = cur_nimg
            tick_time = dnnlib.RunContext.get().get_time_since_last_update()
            total_time = dnnlib.RunContext.get().get_time_since_start() + resume_time

            if sched.lod == 0:
                left_kimg = total_kimg - cur_nimg / 1000
                left_sec = left_kimg * tick_time / tick_kimg
                finaltime = time.asctime(time.localtime(cur_time + left_sec))
                msg_final = '%ss left till %s ' % (shortime(left_sec), finaltime[11:16])
            else:
                msg_final = ''

            # Report progress.
            print('tick %-4d kimg %-6.1f time %-8s  %s min/tick %-6.3g sec/kimg %-7.3g gpumem %-4.1f lr %.2g ' % (
                autosummary('Progress/tick', cur_tick),
                autosummary('Progress/kimg', cur_nimg / 1000.0),
                dnnlib.util.format_time(autosummary('Timing/total_sec', total_time)),
                msg_final,
                autosummary('Timing/min_per_tick', tick_time / 60),
                autosummary('Timing/sec_per_kimg', tick_time / tick_kimg),
                autosummary('Resources/peak_gpu_mem_gb', peak_gpu_mem_op.eval() / 2**30),
                sched.G_lrate))
            autosummary('Timing/total_hours', total_time / (60.0 * 60.0))
            autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0))

            # Save snapshots.
            if image_snapshot_ticks is not None and (cur_tick % image_snapshot_ticks == 0 or done):
                grid_fakes = Gs.run(grid_latents, grid_labels, is_validation=True, minibatch_size=sched.minibatch_gpu)
                misc.save_image_grid(grid_fakes, dnnlib.make_run_dir_path('fake-%04d.%s' % (cur_nimg // 1000, ext)), drange=drange_net, grid_size=grid_size)
            if network_snapshot_ticks is not None and (cur_tick % network_snapshot_ticks == 0 or done):
                misc.save_pkl((G, D, Gs), dnnlib.make_run_dir_path('%s-%04d.pkl' % (savenames[0], cur_nimg // 1000)))
                misc.save_pkl((Gs),       dnnlib.make_run_dir_path('%s-%04d.pkl' % (savenames[1], cur_nimg // 1000)))

            # Update summaries and RunContext.
            tflib.autosummary.save_summaries(summary_log, cur_nimg)
            dnnlib.RunContext.get().update('%.2f' % sched.lod, cur_epoch=cur_nimg // 1000, max_epoch=total_kimg)
            maintenance_time = dnnlib.RunContext.get().get_last_update_interval() - tick_time

    # Save final snapshot.
    misc.save_pkl((G, D, Gs), dnnlib.make_run_dir_path('%s-final.pkl' % savenames[0]))
    misc.save_pkl((Gs),       dnnlib.make_run_dir_path('%s-final.pkl' % savenames[1]))

    # All done.
    summary_log.close()
    training_set.close()
예제 #2
0
def training_loop_vc(
    G_args={},  # Options for generator network.
    D_args={},  # Options for discriminator network.
    I_args={},  # Options for infogan-head/vcgan-head network.
    I_info_args={},  # Options for infogan-head/vcgan-head network.
    G_opt_args={},  # Options for generator optimizer.
    D_opt_args={},  # Options for discriminator optimizer.
    G_loss_args={},  # Options for generator loss.
    D_loss_args={},  # Options for discriminator loss.
    dataset_args={},  # Options for dataset.load_dataset().
    sched_args={},  # Options for train.TrainingSchedule.
    grid_args={},  # Options for train.setup_snapshot_image_grid().
    metric_arg_list=[],  # Options for MetricGroup.
    tf_config={},  # Options for tflib.init_tf().
    use_info_gan=False,  # Whether to use info-gan.
    use_vc_head=False,  # Whether to use vc-head.
    use_vc_head_with_cls=False,  # Whether to use classification in discriminator.
    data_dir=None,  # Directory to load datasets from.
    G_smoothing_kimg=10.0,  # Half-life of the running average of generator weights.
    minibatch_repeats=4,  # Number of minibatches to run before adjusting training parameters.
    lazy_regularization=True,  # Perform regularization as a separate training step?
    G_reg_interval=4,  # How often the perform regularization for G? Ignored if lazy_regularization=False.
    D_reg_interval=16,  # How often the perform regularization for D? Ignored if lazy_regularization=False.
    reset_opt_for_new_lod=True,  # Reset optimizer internal state (e.g. Adam moments) when new layers are introduced?
    total_kimg=25000,  # Total length of the training, measured in thousands of real images.
    mirror_augment=False,  # Enable mirror augment?
    drange_net=[
        -1, 1
    ],  # Dynamic range used when feeding image data to the networks.
    image_snapshot_ticks=50,  # How often to save image snapshots? None = only save 'reals.png' and 'fakes-init.png'.
    network_snapshot_ticks=50,  # How often to save network snapshots? None = only save 'networks-final.pkl'.
    save_tf_graph=False,  # Include full TensorFlow computation graph in the tfevents file?
    save_weight_histograms=False,  # Include weight histograms in the tfevents file?
    resume_pkl=None,  # Network pickle to resume training from, None = train from scratch.
    resume_kimg=0.0,  # Assumed training progress at the beginning. Affects reporting and training schedule.
    resume_time=0.0,  # Assumed wallclock time at the beginning. Affects reporting.
    resume_with_new_nets=False,  # Construct new networks according to G_args and D_args before resuming training?
    traversal_grid=False,  # Used for disentangled representation learning.
    n_discrete=3,  # Number of discrete latents in model.
    n_continuous=4,  # Number of continuous latents in model.
    n_samples_per=10):  # Number of samples for each line in traversal.

    # Initialize dnnlib and TensorFlow.
    tflib.init_tf(tf_config)
    num_gpus = dnnlib.submit_config.num_gpus

    # Load training set.
    training_set = dataset.load_dataset(data_dir=dnnlib.convert_path(data_dir),
                                        verbose=True,
                                        **dataset_args)
    grid_size, grid_reals, grid_labels = misc.setup_snapshot_image_grid(
        training_set, **grid_args)
    misc.save_image_grid(grid_reals,
                         dnnlib.make_run_dir_path('reals.png'),
                         drange=training_set.dynamic_range,
                         grid_size=grid_size)

    # Construct or load networks.
    with tf.device('/gpu:0'):
        if resume_pkl is None or resume_with_new_nets:
            print('Constructing networks...')
            G = tflib.Network('G',
                              num_channels=training_set.shape[0],
                              resolution=training_set.shape[1],
                              label_size=training_set.label_size,
                              **G_args)
            D = tflib.Network('D',
                              num_channels=training_set.shape[0],
                              resolution=training_set.shape[1],
                              label_size=training_set.label_size,
                              **D_args)
            if use_info_gan or use_vc_head or use_vc_head_with_cls:
                I = tflib.Network('I',
                                  num_channels=training_set.shape[0],
                                  resolution=training_set.shape[1],
                                  label_size=training_set.label_size,
                                  **I_args)
                if use_vc_head_with_cls:
                    I_info = tflib.Network('I_info',
                                           num_channels=training_set.shape[0],
                                           resolution=training_set.shape[1],
                                           label_size=training_set.label_size,
                                           **I_info_args)

            Gs = G.clone('Gs')
        if resume_pkl is not None:
            print('Loading networks from "%s"...' % resume_pkl)
            if use_info_gan or use_vc_head:
                rG, rD, rI, rGs = misc.load_pkl(resume_pkl)
            elif use_vc_head_with_cls:
                rG, rD, rI, rI_info, rGs = misc.load_pkl(resume_pkl)
            else:
                rG, rD, rGs = misc.load_pkl(resume_pkl)
            if resume_with_new_nets:
                G.copy_vars_from(rG)
                D.copy_vars_from(rD)
                if use_info_gan or use_vc_head or use_vc_head_with_cls:
                    I.copy_vars_from(rI)
                    if use_vc_head_with_cls:
                        I_info.copy_vars_from(rI_info)
                Gs.copy_vars_from(rGs)
            else:
                G = rG
                D = rD
                if use_info_gan or use_vc_head or use_vc_head_with_cls:
                    I = rI
                    if use_vc_head_with_cls:
                        I_info = rI_info
                Gs = rGs

    # Print layers and generate initial image snapshot.
    G.print_layers()
    D.print_layers()
    if use_info_gan or use_vc_head or use_vc_head_with_cls:
        I.print_layers()
        if use_vc_head_with_cls:
            I_info.print_layers()
    # pdb.set_trace()
    sched = training_schedule(cur_nimg=total_kimg * 1000,
                              training_set=training_set,
                              **sched_args)
    if traversal_grid:
        grid_size, grid_latents, grid_labels = get_grid_latents(
            n_discrete, n_continuous, n_samples_per, G, grid_labels)
    else:
        grid_latents = np.random.randn(np.prod(grid_size), *G.input_shape[1:])
    print('grid_latents.shape:', grid_latents.shape)
    print('grid_labels.shape:', grid_labels.shape)
    # pdb.set_trace()
    grid_fakes, _ = Gs.run(grid_latents,
                           grid_labels,
                           is_validation=True,
                           minibatch_size=sched.minibatch_gpu,
                           randomize_noise=False)
    misc.save_image_grid(grid_fakes,
                         dnnlib.make_run_dir_path('fakes_init.png'),
                         drange=drange_net,
                         grid_size=grid_size)

    # Setup training inputs.
    print('Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device('/cpu:0'):
        lod_in = tf.placeholder(tf.float32, name='lod_in', shape=[])
        lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])
        minibatch_size_in = tf.placeholder(tf.int32,
                                           name='minibatch_size_in',
                                           shape=[])
        minibatch_gpu_in = tf.placeholder(tf.int32,
                                          name='minibatch_gpu_in',
                                          shape=[])
        minibatch_multiplier = minibatch_size_in // (minibatch_gpu_in *
                                                     num_gpus)
        Gs_beta = 0.5**tf.div(tf.cast(minibatch_size_in,
                                      tf.float32), G_smoothing_kimg *
                              1000.0) if G_smoothing_kimg > 0.0 else 0.0

    # Setup optimizers.
    G_opt_args = dict(G_opt_args)
    D_opt_args = dict(D_opt_args)
    for args, reg_interval in [(G_opt_args, G_reg_interval),
                               (D_opt_args, D_reg_interval)]:
        args['minibatch_multiplier'] = minibatch_multiplier
        args['learning_rate'] = lrate_in
        if lazy_regularization:
            mb_ratio = reg_interval / (reg_interval + 1)
            args['learning_rate'] *= mb_ratio
            if 'beta1' in args: args['beta1'] **= mb_ratio
            if 'beta2' in args: args['beta2'] **= mb_ratio
    G_opt = tflib.Optimizer(name='TrainG', **G_opt_args)
    D_opt = tflib.Optimizer(name='TrainD', **D_opt_args)
    G_reg_opt = tflib.Optimizer(name='RegG', share=G_opt, **G_opt_args)
    D_reg_opt = tflib.Optimizer(name='RegD', share=D_opt, **D_opt_args)

    # Build training graph for each GPU.
    data_fetch_ops = []
    for gpu in range(num_gpus):
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):

            # Create GPU-specific shadow copies of G and D.
            G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow')
            D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')
            if use_info_gan or use_vc_head or use_vc_head_with_cls:
                I_gpu = I if gpu == 0 else I.clone(I.name + '_shadow')
                if use_vc_head_with_cls:
                    I_info_gpu = I_info if gpu == 0 else I_info.clone(
                        I_info.name + '_shadow')

            # Fetch training data via temporary variables.
            with tf.name_scope('DataFetch'):
                sched = training_schedule(cur_nimg=int(resume_kimg * 1000),
                                          training_set=training_set,
                                          **sched_args)
                reals_var = tf.Variable(
                    name='reals',
                    trainable=False,
                    initial_value=tf.zeros([sched.minibatch_gpu] +
                                           training_set.shape))
                labels_var = tf.Variable(name='labels',
                                         trainable=False,
                                         initial_value=tf.zeros([
                                             sched.minibatch_gpu,
                                             training_set.label_size
                                         ]))
                reals_write, labels_write = training_set.get_minibatch_tf()
                reals_write, labels_write = process_reals(
                    reals_write, labels_write, lod_in, mirror_augment,
                    training_set.dynamic_range, drange_net)
                reals_write = tf.concat(
                    [reals_write, reals_var[minibatch_gpu_in:]], axis=0)
                labels_write = tf.concat(
                    [labels_write, labels_var[minibatch_gpu_in:]], axis=0)
                data_fetch_ops += [tf.assign(reals_var, reals_write)]
                data_fetch_ops += [tf.assign(labels_var, labels_write)]
                reals_read = reals_var[:minibatch_gpu_in]
                labels_read = labels_var[:minibatch_gpu_in]

            # Evaluate loss functions.
            lod_assign_ops = []
            if 'lod' in G_gpu.vars:
                lod_assign_ops += [tf.assign(G_gpu.vars['lod'], lod_in)]
            if 'lod' in D_gpu.vars:
                lod_assign_ops += [tf.assign(D_gpu.vars['lod'], lod_in)]
            with tf.control_dependencies(lod_assign_ops):
                with tf.name_scope('G_loss'):
                    if use_info_gan or use_vc_head:
                        G_loss, G_reg, I_loss, _ = dnnlib.util.call_func_by_name(
                            G=G_gpu,
                            D=D_gpu,
                            I=I_gpu,
                            opt=G_opt,
                            training_set=training_set,
                            minibatch_size=minibatch_gpu_in,
                            **G_loss_args)
                    elif use_vc_head_with_cls:
                        G_loss, G_reg, I_loss, I_info_loss = dnnlib.util.call_func_by_name(
                            G=G_gpu,
                            D=D_gpu,
                            I=I_gpu,
                            I_info=I_info_gpu,
                            opt=G_opt,
                            training_set=training_set,
                            minibatch_size=minibatch_gpu_in,
                            **G_loss_args)
                    else:
                        G_loss, G_reg = dnnlib.util.call_func_by_name(
                            G=G_gpu,
                            D=D_gpu,
                            opt=G_opt,
                            training_set=training_set,
                            minibatch_size=minibatch_gpu_in,
                            **G_loss_args)
                with tf.name_scope('D_loss'):
                    D_loss, D_reg = dnnlib.util.call_func_by_name(
                        G=G_gpu,
                        D=D_gpu,
                        opt=D_opt,
                        training_set=training_set,
                        minibatch_size=minibatch_gpu_in,
                        reals=reals_read,
                        labels=labels_read,
                        **D_loss_args)

            # Register gradients.
            if not lazy_regularization:
                if G_reg is not None: G_loss += G_reg
                if D_reg is not None: D_loss += D_reg
            else:
                if G_reg is not None:
                    G_reg_opt.register_gradients(
                        tf.reduce_mean(G_reg * G_reg_interval),
                        G_gpu.trainables)
                if D_reg is not None:
                    D_reg_opt.register_gradients(
                        tf.reduce_mean(D_reg * D_reg_interval),
                        D_gpu.trainables)
            # print('G_gpu.trainables:', G_gpu.trainables)
            # print('D_gpu.trainables:', D_gpu.trainables)
            # print('I_gpu.trainables:', I_gpu.trainables)
            if use_info_gan or use_vc_head:
                GI_gpu_trainables = collections.OrderedDict(
                    list(G_gpu.trainables.items()) +
                    list(I_gpu.trainables.items()))
                G_opt.register_gradients(tf.reduce_mean(G_loss + I_loss),
                                         GI_gpu_trainables)
                D_opt.register_gradients(tf.reduce_mean(D_loss),
                                         D_gpu.trainables)
                # G_opt.register_gradients(tf.reduce_mean(I_loss),
                # GI_gpu_trainables)
                # D_opt.register_gradients(tf.reduce_mean(I_loss),
                # D_gpu.trainables)
            elif use_vc_head_with_cls:
                GIIinfo_gpu_trainables = collections.OrderedDict(
                    list(G_gpu.trainables.items()) +
                    list(I_gpu.trainables.items()) +
                    list(I_info_gpu.trainables.items()))
                G_opt.register_gradients(
                    tf.reduce_mean(G_loss + I_loss + I_info_loss),
                    GIIinfo_gpu_trainables)
                D_opt.register_gradients(tf.reduce_mean(D_loss),
                                         D_gpu.trainables)
            else:
                G_opt.register_gradients(tf.reduce_mean(G_loss),
                                         G_gpu.trainables)
                D_opt.register_gradients(tf.reduce_mean(D_loss),
                                         D_gpu.trainables)

            # if use_info_gan:
            # # INFO-GAN-HEAD loss
            # G_opt.register_gradients(tf.reduce_mean(I_loss),
            # G_gpu.trainables)
            # G_opt.register_gradients(tf.reduce_mean(I_loss),
            # I_gpu.trainables)
            # D_opt.register_gradients(tf.reduce_mean(I_loss),
            # D_gpu.trainables)

    # Setup training ops.
    data_fetch_op = tf.group(*data_fetch_ops)
    G_train_op = G_opt.apply_updates()
    D_train_op = D_opt.apply_updates()
    G_reg_op = G_reg_opt.apply_updates(allow_no_op=True)
    D_reg_op = D_reg_opt.apply_updates(allow_no_op=True)
    Gs_update_op = Gs.setup_as_moving_average_of(G, beta=Gs_beta)

    # Finalize graph.
    with tf.device('/gpu:0'):
        try:
            peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse()
        except tf.errors.NotFoundError:
            peak_gpu_mem_op = tf.constant(0)
    tflib.init_uninitialized_vars()

    print('Initializing logs...')
    summary_log = tf.summary.FileWriter(dnnlib.make_run_dir_path())
    if save_tf_graph:
        summary_log.add_graph(tf.get_default_graph())
    if save_weight_histograms:
        G.setup_weight_histograms()
        D.setup_weight_histograms()
        if use_info_gan or use_vc_head or use_vc_head_with_cls:
            I.setup_weight_histograms()
            if use_vc_head_with_cls:
                I_info.setup_weight_histograms()
    metrics = metric_base.MetricGroup(metric_arg_list)

    print('Training for %d kimg...\n' % total_kimg)
    dnnlib.RunContext.get().update('',
                                   cur_epoch=resume_kimg,
                                   max_epoch=total_kimg)
    maintenance_time = dnnlib.RunContext.get().get_last_update_interval()
    cur_nimg = int(resume_kimg * 1000)
    cur_tick = -1
    tick_start_nimg = cur_nimg
    prev_lod = -1.0
    running_mb_counter = 0
    while cur_nimg < total_kimg * 1000:
        if dnnlib.RunContext.get().should_stop(): break

        # Choose training parameters and configure training ops.
        sched = training_schedule(cur_nimg=cur_nimg,
                                  training_set=training_set,
                                  **sched_args)
        assert sched.minibatch_size % (sched.minibatch_gpu * num_gpus) == 0
        training_set.configure(sched.minibatch_gpu, sched.lod)
        if reset_opt_for_new_lod:
            if np.floor(sched.lod) != np.floor(prev_lod) or np.ceil(
                    sched.lod) != np.ceil(prev_lod):
                G_opt.reset_optimizer_state()
                D_opt.reset_optimizer_state()
        prev_lod = sched.lod

        # Run training ops.
        feed_dict = {
            lod_in: sched.lod,
            lrate_in: sched.G_lrate,
            minibatch_size_in: sched.minibatch_size,
            minibatch_gpu_in: sched.minibatch_gpu
        }
        for _repeat in range(minibatch_repeats):
            rounds = range(0, sched.minibatch_size,
                           sched.minibatch_gpu * num_gpus)
            run_G_reg = (lazy_regularization
                         and running_mb_counter % G_reg_interval == 0)
            run_D_reg = (lazy_regularization
                         and running_mb_counter % D_reg_interval == 0)
            cur_nimg += sched.minibatch_size
            running_mb_counter += 1

            # Fast path without gradient accumulation.
            if len(rounds) == 1:
                tflib.run([G_train_op, data_fetch_op], feed_dict)
                if run_G_reg:
                    tflib.run(G_reg_op, feed_dict)
                tflib.run([D_train_op, Gs_update_op], feed_dict)
                if run_D_reg:
                    tflib.run(D_reg_op, feed_dict)

            # Slow path with gradient accumulation.
            else:
                for _round in rounds:
                    tflib.run(G_train_op, feed_dict)
                if run_G_reg:
                    for _round in rounds:
                        tflib.run(G_reg_op, feed_dict)
                tflib.run(Gs_update_op, feed_dict)
                for _round in rounds:
                    tflib.run(data_fetch_op, feed_dict)
                    tflib.run(D_train_op, feed_dict)
                if run_D_reg:
                    for _round in rounds:
                        tflib.run(D_reg_op, feed_dict)

        # Perform maintenance tasks once per tick.
        done = (cur_nimg >= total_kimg * 1000)
        if cur_tick < 0 or cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done:
            cur_tick += 1
            tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0
            tick_start_nimg = cur_nimg
            tick_time = dnnlib.RunContext.get().get_time_since_last_update()
            total_time = dnnlib.RunContext.get().get_time_since_start(
            ) + resume_time

            # Report progress.
            print(
                'tick %-5d kimg %-8.1f lod %-5.2f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %-6.1f gpumem %.1f'
                % (autosummary('Progress/tick', cur_tick),
                   autosummary('Progress/kimg', cur_nimg / 1000.0),
                   autosummary('Progress/lod', sched.lod),
                   autosummary('Progress/minibatch', sched.minibatch_size),
                   dnnlib.util.format_time(
                       autosummary('Timing/total_sec', total_time)),
                   autosummary('Timing/sec_per_tick', tick_time),
                   autosummary('Timing/sec_per_kimg', tick_time / tick_kimg),
                   autosummary('Timing/maintenance_sec', maintenance_time),
                   autosummary('Resources/peak_gpu_mem_gb',
                               peak_gpu_mem_op.eval() / 2**30)))
            autosummary('Timing/total_hours', total_time / (60.0 * 60.0))
            autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0))

            # Save snapshots.
            if image_snapshot_ticks is not None and (
                    cur_tick % image_snapshot_ticks == 0 or done):
                grid_fakes, _ = Gs.run(grid_latents,
                                       grid_labels,
                                       is_validation=True,
                                       minibatch_size=sched.minibatch_gpu,
                                       randomize_noise=False)
                misc.save_image_grid(grid_fakes,
                                     dnnlib.make_run_dir_path(
                                         'fakes%06d.png' % (cur_nimg // 1000)),
                                     drange=drange_net,
                                     grid_size=grid_size)
            if network_snapshot_ticks is not None and (
                    cur_tick % network_snapshot_ticks == 0 or done):
                pkl = dnnlib.make_run_dir_path('network-snapshot-%06d.pkl' %
                                               (cur_nimg // 1000))
                if use_info_gan or use_vc_head:
                    misc.save_pkl((G, D, I, Gs), pkl)
                elif use_vc_head_with_cls:
                    misc.save_pkl((G, D, I, I_info, Gs), pkl)
                else:
                    misc.save_pkl((G, D, Gs), pkl)
                metrics.run(pkl,
                            run_dir=dnnlib.make_run_dir_path(),
                            data_dir=dnnlib.convert_path(data_dir),
                            num_gpus=num_gpus,
                            tf_config=tf_config)

            # Update summaries and RunContext.
            metrics.update_autosummaries()
            tflib.autosummary.save_summaries(summary_log, cur_nimg)
            dnnlib.RunContext.get().update('%.2f' % sched.lod,
                                           cur_epoch=cur_nimg // 1000,
                                           max_epoch=total_kimg)
            maintenance_time = dnnlib.RunContext.get(
            ).get_last_update_interval() - tick_time

    # Save final snapshot.
    if use_info_gan or use_vc_head:
        misc.save_pkl((G, D, I, Gs),
                      dnnlib.make_run_dir_path('network-final.pkl'))
    elif use_vc_head_with_cls:
        misc.save_pkl((G, D, I, I_info, Gs),
                      dnnlib.make_run_dir_path('network-final.pkl'))
    else:
        misc.save_pkl((G, D, Gs),
                      dnnlib.make_run_dir_path('network-final.pkl'))

    # All done.
    summary_log.close()
    training_set.close()
예제 #3
0
def training_loop_vae(
        G_args={},  # Options for generator network.
        E_args={},  # Options for encoder network.
        D_args={},  # Options for discriminator network.
        G_opt_args={},  # Options for generator optimizer.
        D_opt_args={},  # Options for discriminator optimizer.
        G_loss_args={},  # Options for generator loss.
        D_loss_args={},  # Options for discriminator loss.
        dataset_args={},  # Options for dataset.load_dataset().
        sched_args={},  # Options for train.TrainingSchedule.
        grid_args={},  # Options for train.setup_snapshot_image_grid().
        metric_arg_list=[],  # Options for MetricGroup.
        tf_config={},  # Options for tflib.init_tf().
        data_dir=None,  # Directory to load datasets from.
        minibatch_repeats=1,  # Number of minibatches to run before adjusting training parameters.
        total_kimg=25000,  # Total length of the training, measured in thousands of real images.
        mirror_augment=False,  # Enable mirror augment?
        drange_net=[
            -1, 1
        ],  # Dynamic range used when feeding image data to the networks.
        image_snapshot_ticks=50,  # How often to save image snapshots? None = only save 'reals.png' and 'fakes-init.png'.
        network_snapshot_ticks=50,  # How often to save network snapshots? None = only save 'networks-final.pkl'.
        save_tf_graph=False,  # Include full TensorFlow computation graph in the tfevents file?
        save_weight_histograms=False,  # Include weight histograms in the tfevents file?
        resume_pkl=None,  # Network pickle to resume training from, None = train from scratch.
        resume_kimg=0.0,  # Assumed training progress at the beginning. Affects reporting and training schedule.
        resume_time=0.0,  # Assumed wallclock time at the beginning. Affects reporting.
        resume_with_new_nets=False,  # Construct new networks according to G_args and D_args before resuming training?
        traversal_grid=False,  # Used for disentangled representation learning.
        n_discrete=0,  # Number of discrete latents in model.
        n_continuous=4,  # Number of continuous latents in model.
        topk_dims_to_show=20,  # Number of top disentant dimensions to show in a snapshot.
        subgroup_sizes_ls=None,
        subspace_sizes_ls=None,
        forward_eg=False,
        n_samples_per=10):  # Number of samples for each line in traversal.

    # Initialize dnnlib and TensorFlow.
    tflib.init_tf(tf_config)
    num_gpus = dnnlib.submit_config.num_gpus

    # If use Discriminator.
    use_D = D_args is not None

    # Load training set.
    training_set = dataset.load_dataset(data_dir=dnnlib.convert_path(data_dir),
                                        verbose=True,
                                        **dataset_args)
    grid_size, grid_reals, grid_labels = misc.setup_snapshot_image_grid(
        training_set, **grid_args)
    grid_fakes = add_outline(grid_reals, width=1)
    misc.save_image_grid(grid_reals,
                         dnnlib.make_run_dir_path('reals.png'),
                         drange=training_set.dynamic_range,
                         grid_size=grid_size)

    # Construct or load networks.
    with tf.device('/gpu:0'):
        if resume_pkl is None or resume_with_new_nets:
            print('Constructing networks...')
            E = tflib.Network('E',
                              num_channels=training_set.shape[0],
                              resolution=training_set.shape[1],
                              label_size=training_set.label_size,
                              input_shape=[None] + training_set.shape,
                              **E_args)
            G = tflib.Network(
                'G',
                num_channels=training_set.shape[0],
                resolution=training_set.shape[1],
                label_size=training_set.label_size,
                input_shape=[None, n_discrete +
                             G_args.latent_size] if not forward_eg else [
                                 None, n_discrete + G_args.latent_size +
                                 sum(subgroup_sizes_ls)
                             ],
                **G_args)
            if use_D:
                D = tflib.Network('D',
                                  num_channels=training_set.shape[0],
                                  resolution=training_set.shape[1],
                                  label_size=training_set.label_size,
                                  input_shape=[None, D_args.latent_size],
                                  **D_args)
        if resume_pkl is not None:
            print('Loading networks from "%s"...' % resume_pkl)
            if use_D:
                rE, rG, rD = misc.load_pkl(resume_pkl)
            else:
                rE, rG = misc.load_pkl(resume_pkl)
            if resume_with_new_nets:
                E.copy_vars_from(rE)
                G.copy_vars_from(rG)
                if use_D:
                    D.copy_vars_from(rD)
            else:
                E = rE
                G = rG
                if use_D:
                    D = rD

    # Print layers and generate initial image snapshot.
    E.print_layers()
    G.print_layers()
    if use_D:
        D.print_layers()
    sched = training_schedule(cur_nimg=total_kimg * 1000,
                              training_set=training_set,
                              **sched_args)
    if traversal_grid:
        if topk_dims_to_show > 0:
            topk_dims = np.arange(min(topk_dims_to_show, n_continuous))
        else:
            topk_dims = np.arange(n_continuous)
        grid_size, grid_latents, grid_labels = get_grid_latents(
            n_discrete, n_continuous, n_samples_per, G, grid_labels, topk_dims)
    else:
        grid_latents = np.random.randn(np.prod(grid_size), *G.input_shape[1:])
    print('grid_size:', grid_size)
    print('grid_latents.shape:', grid_latents.shape)
    print('grid_labels.shape:', grid_labels.shape)
    grid_fakes, _, _, _, _, _, _, lie_vars = get_return_v(
        G.run(append_gfeats(grid_latents, G) if forward_eg else grid_latents,
              grid_labels,
              is_validation=True,
              minibatch_size=sched.minibatch_gpu,
              randomize_noise=True), 8)
    print('Lie_vars:', lie_vars[0])
    grid_fakes = add_outline(grid_fakes, width=1)
    misc.save_image_grid(grid_fakes,
                         dnnlib.make_run_dir_path('fakes_init.png'),
                         drange=drange_net,
                         grid_size=grid_size)

    # Setup training inputs.
    print('Building TensorFlow graph...')
    with tf.name_scope('Inputs'), tf.device('/cpu:0'):
        lrate_in = tf.placeholder(tf.float32, name='lrate_in', shape=[])
        minibatch_size_in = tf.placeholder(tf.int32,
                                           name='minibatch_size_in',
                                           shape=[])
        minibatch_gpu_in = tf.placeholder(tf.int32,
                                          name='minibatch_gpu_in',
                                          shape=[])
        minibatch_multiplier = minibatch_size_in // (minibatch_gpu_in *
                                                     num_gpus)

    # Setup optimizers.
    G_opt_args = dict(G_opt_args)
    G_opt_args['minibatch_multiplier'] = minibatch_multiplier
    G_opt_args['learning_rate'] = lrate_in
    G_opt = tflib.Optimizer(name='TrainG', **G_opt_args)
    if use_D:
        D_opt_args = dict(D_opt_args)
        D_opt_args['minibatch_multiplier'] = minibatch_multiplier
        D_opt_args['learning_rate'] = lrate_in
        D_opt = tflib.Optimizer(name='TrainD', **D_opt_args)

    # Build training graph for each GPU.
    data_fetch_ops = []
    for gpu in range(num_gpus):
        with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):

            # Create GPU-specific shadow copies of G and D.
            E_gpu = E if gpu == 0 else E.clone(E.name + '_shadow')
            G_gpu = G if gpu == 0 else G.clone(G.name + '_shadow')
            if use_D:
                D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')

            # Fetch training data via temporary variables.
            with tf.name_scope('DataFetch'):
                sched = training_schedule(cur_nimg=int(resume_kimg * 1000),
                                          training_set=training_set,
                                          **sched_args)
                reals_var = tf.Variable(
                    name='reals',
                    trainable=False,
                    initial_value=tf.zeros([sched.minibatch_gpu] +
                                           training_set.shape))
                labels_var = tf.Variable(name='labels',
                                         trainable=False,
                                         initial_value=tf.zeros([
                                             sched.minibatch_gpu,
                                             training_set.label_size
                                         ]))
                reals_write, labels_write = training_set.get_minibatch_tf()
                reals_write, labels_write = process_reals(
                    reals_write, labels_write, 0., mirror_augment,
                    training_set.dynamic_range, drange_net)
                reals_write = tf.concat(
                    [reals_write, reals_var[minibatch_gpu_in:]], axis=0)
                labels_write = tf.concat(
                    [labels_write, labels_var[minibatch_gpu_in:]], axis=0)
                data_fetch_ops += [tf.assign(reals_var, reals_write)]
                data_fetch_ops += [tf.assign(labels_var, labels_write)]
                reals_read = reals_var[:minibatch_gpu_in]
                labels_read = labels_var[:minibatch_gpu_in]

            # Evaluate loss functions.
            if use_D:
                with tf.name_scope('G_loss'):
                    G_loss = dnnlib.util.call_func_by_name(
                        E=E_gpu,
                        G=G_gpu,
                        D=D_gpu,
                        opt=G_opt,
                        training_set=training_set,
                        minibatch_size=minibatch_gpu_in,
                        reals=reals_read,
                        labels=labels_read,
                        **G_loss_args)
                with tf.name_scope('D_loss'):
                    D_loss = dnnlib.util.call_func_by_name(
                        E=E_gpu,
                        D=D_gpu,
                        opt=D_opt,
                        training_set=training_set,
                        minibatch_size=minibatch_gpu_in,
                        reals=reals_read,
                        labels=labels_read,
                        **D_loss_args)
            else:
                with tf.name_scope('G_loss'):
                    G_loss = dnnlib.util.call_func_by_name(
                        E=E_gpu,
                        G=G_gpu,
                        opt=G_opt,
                        training_set=training_set,
                        minibatch_size=minibatch_gpu_in,
                        reals=reals_read,
                        labels=labels_read,
                        **G_loss_args)

            # Register gradients.
            EG_gpu_trainables = collections.OrderedDict(
                list(E_gpu.trainables.items()) +
                list(G_gpu.trainables.items()))
            G_opt.register_gradients(tf.reduce_mean(G_loss), EG_gpu_trainables)
            # G_opt.register_gradients(G_loss,
            # EG_gpu_trainables)
            if use_D:
                D_opt.register_gradients(tf.reduce_mean(D_loss),
                                         D_gpu.trainables)
                # D_opt.register_gradients(D_loss,
                # D_gpu.trainables)

    # Setup training ops.
    data_fetch_op = tf.group(*data_fetch_ops)
    G_train_op = G_opt.apply_updates()
    if use_D:
        D_train_op = D_opt.apply_updates()

    # Finalize graph.
    with tf.device('/gpu:0'):
        try:
            peak_gpu_mem_op = tf.contrib.memory_stats.MaxBytesInUse()
        except tf.errors.NotFoundError:
            peak_gpu_mem_op = tf.constant(0)
    tflib.init_uninitialized_vars()

    print('Initializing logs...')
    summary_log = tf.summary.FileWriter(dnnlib.make_run_dir_path())
    if save_tf_graph:
        summary_log.add_graph(tf.get_default_graph())
    if save_weight_histograms:
        G.setup_weight_histograms()
        if use_D:
            D.setup_weight_histograms()
    metrics = metric_base.MetricGroup(metric_arg_list)

    print('Training for %d kimg...\n' % total_kimg)
    dnnlib.RunContext.get().update('',
                                   cur_epoch=resume_kimg,
                                   max_epoch=total_kimg)
    maintenance_time = dnnlib.RunContext.get().get_last_update_interval()
    cur_nimg = int(resume_kimg * 1000)
    cur_tick = -1
    tick_start_nimg = cur_nimg
    prev_lod = -1.0
    running_mb_counter = 0
    while cur_nimg < total_kimg * 1000:
        if dnnlib.RunContext.get().should_stop(): break

        # Choose training parameters and configure training ops.
        sched = training_schedule(cur_nimg=cur_nimg,
                                  training_set=training_set,
                                  **sched_args)
        assert sched.minibatch_size % (sched.minibatch_gpu * num_gpus) == 0
        training_set.configure(sched.minibatch_gpu, 0)

        # Run training ops.
        feed_dict = {
            lrate_in: sched.G_lrate,
            minibatch_size_in: sched.minibatch_size,
            minibatch_gpu_in: sched.minibatch_gpu
        }
        for _repeat in range(minibatch_repeats):
            rounds = range(0, sched.minibatch_size,
                           sched.minibatch_gpu * num_gpus)
            cur_nimg += sched.minibatch_size
            running_mb_counter += 1

            # Fast path without gradient accumulation.
            if len(rounds) == 1:
                tflib.run([G_train_op], feed_dict)
                tflib.run([data_fetch_op], feed_dict)
                if use_D:
                    tflib.run([D_train_op], feed_dict)

            # Slow path with gradient accumulation.
            else:
                for _round in rounds:
                    tflib.run(G_train_op, feed_dict)
                for _round in rounds:
                    tflib.run(data_fetch_op, feed_dict)
                    if use_D:
                        tflib.run(D_train_op, feed_dict)

        # Perform maintenance tasks once per tick.
        done = (cur_nimg >= total_kimg * 1000)
        if cur_tick < 0 or cur_nimg >= tick_start_nimg + sched.tick_kimg * 1000 or done:
            cur_tick += 1
            tick_kimg = (cur_nimg - tick_start_nimg) / 1000.0
            tick_start_nimg = cur_nimg
            tick_time = dnnlib.RunContext.get().get_time_since_last_update()
            total_time = dnnlib.RunContext.get().get_time_since_start(
            ) + resume_time

            # Report progress.
            print(
                'tick %-5d kimg %-8.1f minibatch %-4d time %-12s sec/tick %-7.1f sec/kimg %-7.2f maintenance %-6.1f gpumem %.1f'
                % (autosummary('Progress/tick', cur_tick),
                   autosummary('Progress/kimg', cur_nimg / 1000.0),
                   autosummary('Progress/minibatch', sched.minibatch_size),
                   dnnlib.util.format_time(
                       autosummary('Timing/total_sec', total_time)),
                   autosummary('Timing/sec_per_tick', tick_time),
                   autosummary('Timing/sec_per_kimg', tick_time / tick_kimg),
                   autosummary('Timing/maintenance_sec', maintenance_time),
                   autosummary('Resources/peak_gpu_mem_gb',
                               peak_gpu_mem_op.eval() / 2**30)))
            autosummary('Timing/total_hours', total_time / (60.0 * 60.0))
            autosummary('Timing/total_days', total_time / (24.0 * 60.0 * 60.0))

            # Save snapshots.
            if network_snapshot_ticks is not None and (
                    cur_tick % network_snapshot_ticks == 0 or done):
                pkl = dnnlib.make_run_dir_path('network-snapshot-%06d.pkl' %
                                               (cur_nimg // 1000))
                if use_D:
                    misc.save_pkl((E, G, D), pkl)
                else:
                    misc.save_pkl((E, G), pkl)
                met_outs = metrics.run(pkl,
                                       run_dir=dnnlib.make_run_dir_path(),
                                       data_dir=dnnlib.convert_path(data_dir),
                                       num_gpus=num_gpus,
                                       tf_config=tf_config,
                                       is_vae=True,
                                       use_D=use_D,
                                       Gs_kwargs=dict(is_validation=True))
                if topk_dims_to_show > 0:
                    if 'tpl_per_dim' in met_outs:
                        avg_distance_per_dim = met_outs[
                            'tpl_per_dim']  # shape: (n_continuous)
                        topk_dims = np.argsort(
                            avg_distance_per_dim
                        )[::-1][:topk_dims_to_show]  # shape: (20)
                    else:
                        topk_dims = np.arange(
                            min(topk_dims_to_show, n_continuous))
                else:
                    topk_dims = np.arange(n_continuous)

            if image_snapshot_ticks is not None and (
                    cur_tick % image_snapshot_ticks == 0 or done):
                if traversal_grid:
                    grid_size, grid_latents, grid_labels = get_grid_latents(
                        n_discrete, n_continuous, n_samples_per, G,
                        grid_labels, topk_dims)
                else:
                    grid_latents = np.random.randn(np.prod(grid_size),
                                                   *G.input_shape[1:])

                grid_fakes, _, _, _, _, _, _, lie_vars = get_return_v(
                    G.run(append_gfeats(grid_latents, G)
                          if forward_eg else grid_latents,
                          grid_labels,
                          is_validation=True,
                          minibatch_size=sched.minibatch_gpu,
                          randomize_noise=True), 8)
                print('Lie_vars:', lie_vars[0])
                grid_fakes = add_outline(grid_fakes, width=1)
                misc.save_image_grid(grid_fakes,
                                     dnnlib.make_run_dir_path(
                                         'fakes%06d.png' % (cur_nimg // 1000)),
                                     drange=drange_net,
                                     grid_size=grid_size)

            # Update summaries and RunContext.
            metrics.update_autosummaries()
            tflib.autosummary.save_summaries(summary_log, cur_nimg)
            dnnlib.RunContext.get().update('%.2f' % 0,
                                           cur_epoch=cur_nimg // 1000,
                                           max_epoch=total_kimg)
            maintenance_time = dnnlib.RunContext.get(
            ).get_last_update_interval() - tick_time

    # Save final snapshot.
    if use_D:
        misc.save_pkl((E, G, D), dnnlib.make_run_dir_path('network-final.pkl'))
    else:
        misc.save_pkl((E, G), dnnlib.make_run_dir_path('network-final.pkl'))

    # All done.
    summary_log.close()
    training_set.close()