def trainingDataFrom_walk1(): trainingSet = pd.DataFrame() # In[39]: dfO = pd.read_csv(pathToTrainingData + 'walk1.csv') eventWindow = clip(dfO, 7.4, 8.7) label = eventsDict['walk'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 8.7, 9.2) label = eventsDict['walk'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 9.2, 9.9) label = eventsDict['walk'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 9.9, 10.5) label = eventsDict['walk'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) return trainingSet
def testDataFrom_ME1(): trainingSet = pd.DataFrame() # In[39]: dfO = pd.read_csv(pathToTestData + 'multEvents1.csv') eventWindow = clip(dfO, 6, 7) label = eventsDict['rest'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 8, 10) label = eventsDict['walk'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 25, 28) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 31, 57) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 71, 74) label = eventsDict['standUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 88, 90) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 92, 96) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 101, 104) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 109, 112) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 115, 119) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) return trainingSet
def trainingDataFrom_type1(): trainingSet = pd.DataFrame() # In[39]: dfO = pd.read_csv(pathToTrainingData + 'type1.csv') eventWindow = clip(dfO, 5.0, 6.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 6.0, 7.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 7.0, 8.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 8.0, 9.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 21.0, 22.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 24.0, 25.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 26.0, 27.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(dfO, 28.0, 29.0) label = eventsDict['type'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) return trainingSet
def activity_recognizer(fileName, startTime, endTime): accl_readings = pd.read_csv(fileName) accl_readings = clip(accl_readings, startTime, endTime) eventSequence = find_events(accl_readings) activity_fsm = FSM(superStates, internalStatesBySS, SSTransitions, internalTransitionsBySS) # get initial state of the FSM. the FSM will remain in this state until the # first event occurs. (initSSName, initIntSName) = activity_fsm.currentStateLabels() activitySequence = [(eventsDict["unk"][0], 0, eventSequence[0][1], initSSName, initIntSName)] # print(eventSequence) for event in eventSequence: activity_fsm.transition(event[0]) (SSName, intSName) = activity_fsm.currentStateLabels() # print(event[0]) # print(SSName, intSName) activitySequence += [(event[0], event[1], event[2], SSName, intSName)] return activitySequence
def trainingDataFrom_standtostand3(): # In[0]: df = pd.read_csv(pathToTrainingData + 'standtostand3.csv') trainingSet = pd.DataFrame() # In[1]: eventWindow = clip(df, 11, 15) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[2]: eventWindow = clip(df, 16, 21) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[3]: eventWindow = clip(df, 26, 31) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[4]: eventWindow = clip(df, 34, 38) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[5]: eventWindow = clip(df, 44, 48) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[6]: eventWindow = clip(df, 60, 65) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[7]: eventWindow = clip(df, 68, 70) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) return trainingSet
def trainingDataFrom_standtostand2(): # In[0]: df = pd.read_csv(pathToTrainingData + 'standtostand2.csv') trainingSet = pd.DataFrame() # In[1]: eventWindow = clip(df, 18, 21) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[2]: eventWindow = clip(df, 23, 27) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[3]: eventWindow = clip(df, 33, 37) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[4]: eventWindow = clip(df, 42, 46) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[5]: eventWindow = clip(df, 55, 58) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[6]: eventWindow = clip(df, 66, 70) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[7]: eventWindow = clip(df, 77, 81) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[8]: eventWindow = clip(df, 87, 90) label = eventsDict['standUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) return trainingSet
def trainingDataFrom_sitstandmult(): # In[0]: df = pd.read_csv(pathToTrainingData+'sitstandmult.csv') trainingSet = pd.DataFrame() # In[1]: eventWindow = clip(df, 9, 12) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 12, 16) # label = eventsDict['lieDown'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 19, 23) # label = eventsDict['sitUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 24, 26) # label = eventsDict['standUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(df, 29, 32) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 33, 36) # label = eventsDict['lieDown'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 37, 41) # label = eventsDict['sitUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 43, 45) # label = eventsDict['standUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(df, 47, 50) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 50, 54) # label = eventsDict['lieDown'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 56, 59) # label = eventsDict['sitUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 60, 62) # label = eventsDict['standUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(df, 65, 68) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 68, 72) # label = eventsDict['lieDown'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 73, 77) # label = eventsDict['sitUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) # eventWindow = clip(df, 78, 80) # label = eventsDict['standUp'][1] # trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) # trainingSet = trainingSet.append(trainingInstance) return trainingSet
def trainingDataFrom_standtostand1(): # In[0]: df = pd.read_csv(pathToTrainingData + 'standtostand1.csv') trainingSet = pd.DataFrame() # In[2]: eventWindow = clip(df, 8.5, 12) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[3]: eventWindow = clip(df, 16, 20) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[4]: eventWindow = clip(df, 28, 32) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[5]: eventWindow = clip(df, 34, 37) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[6]: eventWindow = clip(df, 45, 49) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[7]: eventWindow = clip(df, 51, 55) label = eventsDict['turn'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[8]: eventWindow = clip(df, 60, 64) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) eventWindow = clip(df, 68, 70) label = eventsDict['standUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) return trainingSet
def trainingDataFrom_one(): trainingSet = pd.DataFrame() # In[39]: one = pd.read_csv(pathToTrainingData + 'one.csv') one_1 = clip(one, 5, 50) # First sit down event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_1, 12, 15) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # First doing nothing event. Add features to training set. # ----------------------------------------------------------- eventWindow = clip(one_1, 16, 20) label = eventsDict['rest'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # First lyingDown activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_1, 21, 25) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # 1st situp event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_1, 35, 41) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # Second doing nothing event. Add features to training set. # ----------------------------------------------------------- eventWindow = clip(one_1, 42, 45) label = eventsDict['rest'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # First stand up activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_1, 46, 48) label = eventsDict['standUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[40]: one_2 = clip(one, 51, 100) # Next sit down event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_2, 57, 60) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # Another doing nothing event. Add features to training set. # ----------------------------------------------------------- eventWindow = clip(one_2, 61, 64) label = eventsDict['rest'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # First lyingDown activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_2, 64, 69) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # 2nd situp event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_2, 84, 89) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # Second stand up activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_2, 94, 98) label = eventsDict['standUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[41]: one_3 = clip(one, 140, 190) # Next sit down event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_3, 146, 149) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # Another doing nothing event. Add features to training set. # ----------------------------------------------------------- eventWindow = clip(one_3, 151, 155) label = eventsDict['rest'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # First lyingDown activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_3, 155, 159) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # 2nd situp event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_3, 170, 176) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # Second stand up activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_3, 180, 183) label = eventsDict['standUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # In[42]: one_4 = clip(one, 190, 235) # Next sit down event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_4, 191, 195) label = eventsDict['sitDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # Another doing nothing event. Add features to training set. # ----------------------------------------------------------- eventWindow = clip(one_4, 204, 210) label = eventsDict['rest'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # First lyingDown activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_4, 198, 203) label = eventsDict['lieDown'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # 2nd situp event. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_4, 218, 223) label = eventsDict['sitUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) # Second stand up activity. Add features to training set. # ------------------------------------------------------ eventWindow = clip(one_4, 228, 232) label = eventsDict['standUp'][1] trainingInstance = convertRawToTrainingInstance(eventWindow, label, reverseEventsDict[label]) trainingSet = trainingSet.append(trainingInstance) return trainingSet