# np.random.seed(1)
# gmm = GaussianMixture(n_components=5, covariance_type='spherical')
# gmm.means_ = np.array([[10], [20], [60], [80], [110]])
# gmm.covariances_ = np.array([[3], [3], [2], [2], [1]]) ** 2
# gmm.weights_ = np.array([0.2, 0.2, 0.2, 0.2, 0.2])

# X = gmm.sample(2000)
# data = X[0]
# data = (data - min(X[0]))/(max(X[0])-min(X[0]))
# plt.hist(data, 200000, density=False, histtype='stepfilled', alpha=1)

train_data = pd.read_csv('data/testone.csv')
transformer = DataTransformer()
discrete_columns = tuple()
num_gen = train_data.shape[1]
transformer.fit(train_data, discrete_columns)
train_data = transformer.transform(train_data)

# In[4]:


class formerNet(torch.nn.Module):
    def __init__(self):
        """
        In the constructor we instantiate five parameters and assign them as members.
        """
        super().__init__()
        self.former = torch.nn.Sequential(torch.nn.Linear(Z_dim, h_dim),
                                          torch.nn.BatchNorm1d(h_dim),
                                          torch.nn.PReLU())
예제 #2
0
class CTGANSynthesizer(object):
    """Conditional Table GAN Synthesizer.

    This is the core class of the CTGAN project, where the different components
    are orchestrated together.

    For more details about the process, please check the [Modeling Tabular data using
    Conditional GAN](https://arxiv.org/abs/1907.00503) paper.

    Args:
        embedding_dim (int):
            Size of the random sample passed to the Generator. Defaults to 128.
        gen_dim (tuple or list of ints):
            Size of the output samples for each one of the Residuals. A Resiudal Layer
            will be created for each one of the values provided. Defaults to (256, 256).
        dis_dim (tuple or list of ints):
            Size of the output samples for each one of the Discriminator Layers. A Linear Layer
            will be created for each one of the values provided. Defaults to (256, 256).
        l2scale (float):
            Wheight Decay for the Adam Optimizer. Defaults to 1e-6.
        batch_size (int):
            Number of data samples to process in each step.
    """
    def __init__(self,
                 embedding_dim=128,
                 gen_dim=(256, 256),
                 dis_dim=(256, 256),
                 l2scale=1e-6,
                 batch_size=500):

        self.embedding_dim = embedding_dim
        self.gen_dim = gen_dim
        self.dis_dim = dis_dim

        self.l2scale = l2scale
        self.batch_size = batch_size
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

    def _apply_activate(self, data):
        data_t = []
        st = 0
        for item in self.transformer.output_info:
            if item[1] == 'tanh':
                ed = st + item[0]
                data_t.append(torch.tanh(data[:, st:ed]))
                st = ed
            elif item[1] == 'softmax':
                ed = st + item[0]
                data_t.append(
                    functional.gumbel_softmax(data[:, st:ed], tau=0.2))
                st = ed
            else:
                assert 0

        return torch.cat(data_t, dim=1)

    def _cond_loss(self, data, c, m):
        loss = []
        st = 0
        st_c = 0
        skip = False
        for item in self.transformer.output_info:
            if item[1] == 'tanh':
                st += item[0]
                skip = True

            elif item[1] == 'softmax':
                if skip:
                    skip = False
                    st += item[0]
                    continue

                ed = st + item[0]
                ed_c = st_c + item[0]
                tmp = functional.cross_entropy(data[:, st:ed],
                                               torch.argmax(c[:, st_c:ed_c],
                                                            dim=1),
                                               reduction='none')
                loss.append(tmp)
                st = ed
                st_c = ed_c

            else:
                assert 0

        loss = torch.stack(loss, dim=1)

        return (loss * m).sum() / data.size()[0]

    def fit(self,
            train_data,
            weekday_percentage,
            discrete_columns=tuple(),
            epochs=300,
            log_frequency=True):
        """Fit the CTGAN Synthesizer models to the training data.

        Args:
            train_data (numpy.ndarray or pandas.DataFrame):
                Training Data. It must be a 2-dimensional numpy array or a
                pandas.DataFrame.
            discrete_columns (list-like):
                List of discrete columns to be used to generate the Conditional
                Vector. If ``train_data`` is a Numpy array, this list should
                contain the integer indices of the columns. Otherwise, if it is
                a ``pandas.DataFrame``, this list should contain the column names.
            epochs (int):
                Number of training epochs. Defaults to 300.
            log_frequency (boolean):
                Whether to use log frequency of categorical levels in conditional
                sampling. Defaults to ``True``.
        """

        self.transformer = DataTransformer()
        self.transformer.fit(train_data, discrete_columns)
        train_data = self.transformer.transform(train_data)

        data_sampler = Sampler(train_data, self.transformer.output_info)

        data_dim = self.transformer.output_dimensions
        self.cond_generator = ConditionalGenerator(
            train_data, self.transformer.output_info, log_frequency)

        self.generator = Generator(
            self.embedding_dim + self.cond_generator.n_opt, self.gen_dim,
            data_dim).to(self.device)

        discriminator = Discriminator(data_dim + self.cond_generator.n_opt,
                                      self.dis_dim).to(self.device)

        optimizerG = optim.Adam(self.generator.parameters(),
                                lr=2e-4,
                                betas=(0.5, 0.9),
                                weight_decay=self.l2scale)
        optimizerD = optim.Adam(discriminator.parameters(),
                                lr=2e-4,
                                betas=(0.5, 0.9))

        assert self.batch_size % 2 == 0
        mean = torch.zeros(self.batch_size,
                           self.embedding_dim,
                           device=self.device)
        std = mean + 1

        steps_per_epoch = max(len(train_data) // self.batch_size, 1)
        print("Number of training steps per epoch is {} for batch size {}\n".
              format(steps_per_epoch, self.batch_size))
        for epoch in range(epochs):
            for id_ in range(steps_per_epoch):
                fakez = torch.normal(mean=mean, std=std)

                condvec = self.cond_generator.sample(self.batch_size)
                if condvec is None:
                    c1, m1, col, opt = None, None, None, None
                    real = data_sampler.sample(self.batch_size, col, opt)
                else:
                    c1, m1, col, opt = condvec
                    c1 = torch.from_numpy(c1).to(self.device)
                    m1 = torch.from_numpy(m1).to(self.device)
                    fakez = torch.cat([fakez, c1], dim=1)

                    perm = np.arange(self.batch_size)
                    np.random.shuffle(perm)
                    real = data_sampler.sample(self.batch_size, col[perm],
                                               opt[perm])
                    c2 = c1[perm]

                fake = self.generator(fakez)
                fakeact = self._apply_activate(fake)

                real = torch.from_numpy(real.astype('float32')).to(self.device)

                if c1 is not None:
                    fake_cat = torch.cat([fakeact, c1], dim=1)
                    real_cat = torch.cat([real, c2], dim=1)
                else:
                    real_cat = real
                    fake_cat = fake

                y_fake = discriminator(fake_cat)
                y_real = discriminator(real_cat)

                pen = discriminator.calc_gradient_penalty(
                    real_cat, fake_cat, self.device)
                loss_d = -(torch.mean(y_real) - torch.mean(y_fake))

                optimizerD.zero_grad()
                pen.backward(retain_graph=True)
                loss_d.backward()
                optimizerD.step()

                fakez = torch.normal(mean=mean, std=std)
                condvec = self.cond_generator.sample(self.batch_size)

                if condvec is None:
                    c1, m1, col, opt = None, None, None, None
                else:
                    c1, m1, col, opt = condvec
                    c1 = torch.from_numpy(c1).to(self.device)
                    m1 = torch.from_numpy(m1).to(self.device)
                    fakez = torch.cat([fakez, c1], dim=1)

                fake = self.generator(fakez)
                fakeact = self._apply_activate(fake)

                if c1 is not None:
                    y_fake = discriminator(torch.cat([fakeact, c1], dim=1))
                else:
                    y_fake = discriminator(fakeact)

                if condvec is None:
                    cross_entropy = 0
                else:
                    cross_entropy = self._cond_loss(fake, c1, m1)

                loss_g = -torch.mean(y_fake) + cross_entropy

                optimizerG.zero_grad()
                loss_g.backward()
                optimizerG.step()

            print("Epoch %d, Loss G: %.4f, Loss D: %.4f" %
                  (epoch + 1, loss_g.detach().cpu(), loss_d.detach().cpu()),
                  flush=True)

            self.evaluate_model(epoch, weekday_percentage)

    def evaluate_model(self, epoch, weekday_percentage):
        # create some genrated samples using the generator model
        gen_samples = self.sample(18000)
        gen_weekday_percentage = gen_samples['weekday'].value_counts(
            normalize=True)

        # sort series by the weekday name
        weekday_percentage = weekday_percentage.sort_index(ascending=True)
        gen_weekday_percentage = gen_weekday_percentage.sort_index(
            ascending=True)

        score = mean_squared_error(weekday_percentage, gen_weekday_percentage)
        print("Evaluation after epoch {} is {}\n".format(epoch + 1, score))

    def sample(self, n):
        """Sample data similar to the training data.

        Args:
            n (int):
                Number of rows to sample.

        Returns:
            numpy.ndarray or pandas.DataFrame
        """

        steps = n // self.batch_size + 1
        data = []
        for i in range(steps):
            mean = torch.zeros(self.batch_size, self.embedding_dim)
            std = mean + 1
            fakez = torch.normal(mean=mean, std=std).to(self.device)

            condvec = self.cond_generator.sample_zero(self.batch_size)
            if condvec is None:
                pass
            else:
                c1 = condvec
                c1 = torch.from_numpy(c1).to(self.device)
                fakez = torch.cat([fakez, c1], dim=1)

            fake = self.generator(fakez)
            fakeact = self._apply_activate(fake)
            data.append(fakeact.detach().cpu().numpy())

        data = np.concatenate(data, axis=0)
        data = data[:n]

        return self.transformer.inverse_transform(data, None)
예제 #3
0
class CTGANSynthesizer(object):
    """Conditional Table GAN Synthesizer.

    This is the core class of the CTGAN project, where the different components
    are orchestrated together.

    For more details about the process, please check the [Modeling Tabular data using
    Conditional GAN](https://arxiv.org/abs/1907.00503) paper.

    Args:
        embedding_dim (int):
            Size of the random sample passed to the Generator. Defaults to 128.
        gen_dim (tuple or list of ints):
            Size of the output samples for each one of the Residuals. A Resiudal Layer
            will be created for each one of the values provided. Defaults to (256, 256).
        dis_dim (tuple or list of ints):
            Size of the output samples for each one of the Discriminator Layers. A Linear Layer
            will be created for each one of the values provided. Defaults to (256, 256).
        l2scale (float):
            Wheight Decay for the Adam Optimizer. Defaults to 1e-6.
        batch_size (int):
            Number of data samples to process in each step.
    """
    def __init__(self,
                 embedding_dim=128,
                 gen_dim=(256, 256),
                 dis_dim=(256, 256),
                 l2scale=1e-6,
                 batch_size=500):

        self.embedding_dim = embedding_dim
        self.gen_dim = gen_dim
        self.dis_dim = dis_dim

        self.l2scale = l2scale
        self.batch_size = batch_size
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

    def _apply_activate(self, data):
        data_t = []
        st = 0
        for item in self.transformer.output_info:
            if item[1] == 'tanh':
                ed = st + item[0]
                data_t.append(torch.tanh(data[:, st:ed]))
                st = ed
            elif item[1] == 'softmax':
                ed = st + item[0]
                data_t.append(
                    functional.gumbel_softmax(data[:, st:ed], tau=0.2))
                st = ed
            else:
                assert 0

        return torch.cat(data_t, dim=1)

    def _cond_loss(self, data, c, m):
        loss = []
        st = 0
        st_c = 0
        skip = False
        for item in self.transformer.output_info:
            if item[1] == 'tanh':
                st += item[0]
                skip = True

            elif item[1] == 'softmax':
                if skip:
                    skip = False
                    st += item[0]
                    continue

                ed = st + item[0]
                ed_c = st_c + item[0]
                tmp = functional.cross_entropy(data[:, st:ed],
                                               torch.argmax(c[:, st_c:ed_c],
                                                            dim=1),
                                               reduction='none')
                loss.append(tmp)
                st = ed
                st_c = ed_c

            else:
                assert 0

        loss = torch.stack(loss, dim=1)

        return (loss * m).sum() / data.size()[0]

    def fit(self,
            train_data,
            prefered_label,
            black_box_path,
            discrete_columns=tuple(),
            conditional_cols=None,
            epochs=300,
            log_frequency=True):
        """Fit the CTGAN Synthesizer models to the training data.

        Args:
            train_data (numpy.ndarray or pandas.DataFrame):
                Training Data. It must be a 2-dimensional numpy array or a
                pandas.DataFrame.
            discrete_columns (list-like):
                List of discrete columns to be used to generate the Conditional
                Vector. If ``train_data`` is a Numpy array, this list should
                contain the integer indices of the columns. Otherwise, if it is
                a ``pandas.DataFrame``, this list should contain the column names.
            epochs (int):
                Number of training epochs. Defaults to 300.
            log_frequency (boolean):
                Whether to use log frequency of categorical levels in conditional
                sampling. Defaults to ``True``.
        """

        self.prefered_label = prefered_label
        self.blackbox_model = pickle.load(open(black_box_path, "rb"))

        self.transformer = DataTransformer()
        self.transformer.fit(train_data, discrete_columns)
        train_data = self.transformer.transform(train_data)

        data_sampler = Sampler(train_data, self.transformer.output_info)

        data_dim = self.transformer.output_dimensions
        self.cond_generator = ConditionalGenerator(
            train_data, self.transformer.output_info, log_frequency,
            conditional_cols)

        self.generator = Generator(
            self.embedding_dim + self.cond_generator.n_opt, self.gen_dim,
            data_dim).to(self.device)

        discriminator = Discriminator(data_dim, self.dis_dim,
                                      1).to(self.device)

        conditonal_discriminator = Discriminator(1 + self.cond_generator.n_opt,
                                                 self.dis_dim).to(self.device)

        optimizerG = optim.Adam(self.generator.parameters(),
                                lr=2e-4,
                                betas=(0.5, 0.9),
                                weight_decay=self.l2scale)
        optimizerD = optim.Adam(discriminator.parameters(),
                                lr=2e-4,
                                betas=(0.5, 0.9))
        optimizerconditionalD = optim.Adam(
            conditonal_discriminator.parameters(), lr=2e-4, betas=(0.5, 0.9))

        assert self.batch_size % 2 == 0
        mean = torch.zeros(self.batch_size,
                           self.embedding_dim,
                           device=self.device)
        std = mean + 1

        steps_per_epoch = max(len(train_data) // self.batch_size, 1)
        for i in range(epochs):
            flip_loss_list = []
            real_flip_loss_list = []
            for id_ in range(steps_per_epoch):

                fakez = torch.normal(mean=mean, std=std)
                condvec = self.cond_generator.sample(self.batch_size)
                if condvec is None:
                    c1, m1, col, opt = None, None, None, None
                    real = data_sampler.sample(self.batch_size, col, opt)
                else:
                    c1, m1, col, opt = condvec
                    c1 = torch.from_numpy(c1).to(self.device)
                    m1 = torch.from_numpy(m1).to(self.device)
                    fakez = torch.cat([fakez, c1], dim=1)

                    perm = np.arange(self.batch_size)
                    np.random.shuffle(perm)
                    real = data_sampler.sample(self.batch_size, col[perm],
                                               opt[perm])
                    c2 = c1[perm]

                fake = self.generator(fakez)
                fakeact = self._apply_activate(fake)

                if condvec is None:
                    cross_entropy = 0
                else:
                    cross_entropy = self._cond_loss(fake, c1, m1)

                real = torch.from_numpy(real.astype('float32')).to(self.device)

                if c1 is not None:

                    real_cat = real
                    fake_cat = fakeact

                else:
                    real_cat = real
                    fake_cat = fake

                y_fake = discriminator(fake_cat)
                y_real = discriminator(real_cat)

                if c1 is not None:
                    conditional_fake_cat = torch.cat([y_fake, c1], dim=1)
                    conditional_real_cat = torch.cat([y_real, c2], dim=1)

                else:
                    conditional_fake_cat = y_fake
                    conditional_real_cat = y_real

                conditional_y_fake = conditonal_discriminator(
                    conditional_fake_cat)
                conditional_y_real = conditonal_discriminator(
                    conditional_real_cat)

                pen = discriminator.calc_gradient_penalty(
                    real_cat, fake_cat, self.device)
                loss_d = -(torch.mean(y_real) - torch.mean(y_fake))

                condtional_pen = conditonal_discriminator.calc_gradient_penalty(
                    conditional_real_cat, conditional_fake_cat, self.device)
                loss_condtional_d = -(torch.mean(conditional_y_real) -
                                      torch.mean(conditional_y_fake))

                optimizerD.zero_grad()
                pen.backward(retain_graph=True)
                loss_d.backward(retain_graph=True)
                optimizerD.step()

                optimizerconditionalD.zero_grad()
                condtional_pen.backward(retain_graph=True)
                loss_condtional_d.backward()
                optimizerconditionalD.step()

                fakez = torch.normal(mean=mean, std=std)
                condvec = self.cond_generator.sample(self.batch_size)

                if condvec is None:
                    c1, m1, col, opt = None, None, None, None
                else:
                    c1, m1, col, opt = condvec
                    c1 = torch.from_numpy(c1).to(self.device)
                    m1 = torch.from_numpy(m1).to(self.device)
                    fakez = torch.cat([fakez, c1], dim=1)

                fake = self.generator(fakez)
                fakeact = self._apply_activate(fake)

                if c1 is not None:
                    y_fake = discriminator(fakeact)
                    conditional_y_fake = conditonal_discriminator(
                        torch.cat([y_fake, c1], dim=1))
                else:
                    y_fake = discriminator(fakeact)
                    conditional_y_fake = conditonal_discriminator(y_fake)

                if condvec is None:
                    cross_entropy = 0
                else:
                    cross_entropy = self._cond_loss(fake, c1, m1)

                fake_act_inv = self.transformer.inverse_transform(
                    fakeact.detach().cpu().numpy(), None)
                fake_act_inv = _factorize_categoricals(fake_act_inv,
                                                       discrete_columns)
                fake_act_inv = xgb.DMatrix(data=fake_act_inv)
                black_box_pred_prob = self.blackbox_model.predict(fake_act_inv)
                #black_box_pred_prob = torch.from_numpy(np.stack([1-black_box_pred_prob,black_box_pred_prob], axis = -1))
                #flip_loss = torch.nn.CrossEntropyLoss()(black_box_pred_prob, torch.tensor([self.prefered_label]).repeat(self.batch_size))
                flip_loss = sum(-np.log(black_box_pred_prob)) / self.batch_size

                real_inv = self.transformer.inverse_transform(
                    real.detach().cpu().numpy(), None)
                real_inv = _factorize_categoricals(real_inv, discrete_columns)
                real_inv = xgb.DMatrix(data=real_inv)
                real_pred_prob = self.blackbox_model.predict(real_inv)
                #black_box_pred_prob = torch.from_numpy(np.stack([1-black_box_pred_prob,black_box_pred_prob], axis = -1))
                #flip_loss = torch.nn.CrossEntropyLoss()(black_box_pred_prob, torch.tensor([self.prefered_label]).repeat(self.batch_size))
                real_flip_loss = sum(-np.log(real_pred_prob)) / self.batch_size

                loss_g = -torch.mean(
                    conditional_y_fake) + cross_entropy + 10 * flip_loss
                #print(f"Base Loss:{-torch.mean(conditional_y_fake)}, Conditional Loss:{cross_entropy}, 10Flip Loss:{flip_loss}")
                flip_loss_list.append(flip_loss)
                real_flip_loss_list.append(real_flip_loss)

                optimizerG.zero_grad()
                loss_g.backward()
                optimizerG.step()

            print(
                f"Generated flip loss {np.mean(flip_loss_list)}, Real flip loss {np.mean(real_flip_loss_list)}"
            )
            print("Condtional Cross Entropy Loss", cross_entropy)
            print(
                "Epoch %d, Loss G: %.4f, Loss D: %.4f, Loss Conditional D: %.4f"
                % (i + 1, loss_g.detach().cpu(), loss_d.detach().cpu(),
                   loss_condtional_d.detach().cpu()),
                flush=True)

    def sample(self, n, col_index=None):
        """Sample data similar to the training data.
        Args:
            n (int):
                Number of rows to sample.
        Returns:
            numpy.ndarray or pandas.DataFrame
        """

        steps = n // self.batch_size + 1
        data = []
        for i in range(steps):
            mean = torch.zeros(self.batch_size, self.embedding_dim)
            std = mean + 1
            fakez = torch.normal(mean=mean, std=std).to(self.device)

            condvec, m1 = self.cond_generator.sample_zero(self.batch_size)
            m1 = torch.from_numpy(m1).to(self.device)
            if condvec is None:
                pass
            else:
                c1 = condvec
                if col_index != None:
                    c1 = np.zeros_like(c1)
                    c1[:, col_index] = 1
                c1 = torch.from_numpy(c1).to(self.device)
                fakez = torch.cat([fakez, c1], dim=1)

            fake = self.generator(fakez)
            fakeact = self._apply_activate(fake)
            data.append(fakeact.detach().cpu().numpy())
            print(self._cond_loss(fake, c1, m1))

        data = np.concatenate(data, axis=0)
        data = data[:n]

        return self.transformer.inverse_transform(data, None)