def test_predict_fp16(self): if context.num_gpus() >= 2: self.skipTest( 'No need to test 2+ GPUs without a distribution strategy.') self._prepare_files_and_flags('--dtype=fp16') t = transformer_main.TransformerTask(FLAGS) t.predict()
def test_eval(self): if context.num_gpus() >= 2: self.skipTest( 'No need to test 2+ GPUs without a distribution strategy.') if 'test_xla' in sys.argv[0]: self.skipTest('TODO(xla): Make this test faster under XLA.') self._prepare_files_and_flags() t = transformer_main.TransformerTask(FLAGS) t.eval()
def test_train_2_gpu(self): if context.num_gpus() < 2: self.skipTest( '{} GPUs are not available for this test. {} GPUs are available' .format(2, context.num_gpus())) FLAGS.distribution_strategy = 'mirrored' FLAGS.num_gpus = 2 FLAGS.param_set = 'base' t = transformer_main.TransformerTask(FLAGS) t.train()
def test_train_static_batch(self): if context.num_gpus() >= 2: self.skipTest( 'No need to test 2+ GPUs without a distribution strategy.') FLAGS.distribution_strategy = 'one_device' if tf.test.is_built_with_cuda(): FLAGS.num_gpus = 1 else: FLAGS.num_gpus = 0 FLAGS.static_batch = True t = transformer_main.TransformerTask(FLAGS) t.train()
def test_train_no_dist_strat(self): if context.num_gpus() >= 2: self.skipTest( 'No need to test 2+ GPUs without a distribution strategy.') t = transformer_main.TransformerTask(FLAGS) t.train()
def test_train_fp16(self): FLAGS.distribution_strategy = 'one_device' FLAGS.dtype = 'fp16' t = transformer_main.TransformerTask(FLAGS) t.train()
def test_train_1_gpu_with_dist_strat(self): FLAGS.distribution_strategy = 'one_device' t = transformer_main.TransformerTask(FLAGS) t.train()