예제 #1
0
    def test_repetition_penalty_dist_process(self, use_xla):
        vocab_size = 10
        cur_len = 2

        input_ids = tf.constant([[0, 1], [5, 0]], dtype=tf.int32)
        self.assertEqual(cur_len, input_ids.shape[1])

        scores = self._get_uniform_logits(batch_size=2, length=vocab_size)

        mask = tf.cast(tf.constant([[1] + 9 * [0], 10 * [0]]), tf.bool)
        scores = tf.where(mask, -1 / vocab_size, scores)
        mask = tf.cast(tf.constant([10 * [0], 5 * [0] + [1] + 4 * [0]]), tf.bool)
        scores = tf.where(mask, 4 / vocab_size, scores)
        rep_penalty_proc = TFRepetitionPenaltyLogitsProcessor(penalty=2.0)
        if use_xla:
            rep_penalty_proc = tf.function(rep_penalty_proc, jit_compile=True)

        scores = rep_penalty_proc(input_ids, tf.identity(scores), cur_len)

        # check that values were correctly changed (negative scores for used tokens should increase, others
        # should decrease)
        self.assertAlmostEqual(scores[0, 0].numpy(), -(1 / vocab_size) * 2)
        self.assertAlmostEqual(scores[0, 1].numpy(), (1 / vocab_size) / 2)
        self.assertAlmostEqual(scores[0, 2].numpy(), (1 / vocab_size))  # unused tokens should see no change

        self.assertAlmostEqual(scores[1, 0].numpy(), (1 / vocab_size) / 2)
        self.assertAlmostEqual(scores[1, 5].numpy(), (4 / vocab_size) / 2)
        self.assertAlmostEqual(scores[0, 2].numpy(), (1 / vocab_size))  # unused tokens should see no change
    def test_processor_list(self):
        batch_size = 4
        cur_len = 10
        vocab_size = 15
        eos_token_id = 0

        # dummy input_ids and scores
        input_ids = ids_tensor((batch_size, cur_len), vocab_size)
        input_ids_comp = tf.identity(input_ids)

        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_comp = tf.identity(scores)

        # instantiate all dist processors
        min_dist_proc = TFMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
        temp_dist_warp = TFTemperatureLogitsWarper(temperature=0.5)
        rep_penalty_proc = TFRepetitionPenaltyLogitsProcessor(penalty=2.0)
        top_k_warp = TFTopKLogitsWarper(3)
        top_p_warp = TFTopPLogitsWarper(0.8)
        no_repeat_proc = TFNoRepeatNGramLogitsProcessor(2)
        no_bad_words_dist_proc = TFNoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)

        # no processor list
        scores = min_dist_proc(input_ids, scores, cur_len)
        scores = temp_dist_warp(input_ids, scores)
        scores = rep_penalty_proc(input_ids, scores, cur_len)
        scores = top_k_warp(input_ids, scores)
        scores = top_p_warp(input_ids, scores)
        scores = no_repeat_proc(input_ids, scores, cur_len)
        scores = no_bad_words_dist_proc(input_ids, scores, cur_len)

        # with processor list
        processor = TFLogitsProcessorList(
            [
                min_dist_proc,
                temp_dist_warp,
                rep_penalty_proc,
                top_k_warp,
                top_p_warp,
                no_repeat_proc,
                no_bad_words_dist_proc,
            ]
        )
        scores_comp = processor(input_ids, scores_comp, cur_len=cur_len)

        # remove inf
        scores = tf.where(tf.math.is_inf(scores), -1e9, scores)
        scores_comp = tf.where(tf.math.is_inf(scores_comp), -1e9, scores_comp)

        # scores should be equal
        tf.debugging.assert_near(scores, scores_comp, atol=1e-3)

        # input_ids should never be changed
        self.assertListEqual(input_ids.numpy().tolist(), input_ids_comp.numpy().tolist())
예제 #3
0
    def test_processor_list(self):
        batch_size = 4
        sequence_length = 10
        vocab_size = 15
        eos_token_id = 0

        # dummy input_ids and scores
        input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
        input_ids_comp = tf.identity(input_ids)

        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_comp = tf.identity(scores)

        # instantiate all dist processors
        min_dist_proc = TFMinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
        rep_penalty_proc = TFRepetitionPenaltyLogitsProcessor(penalty=2.0)
        no_repeat_proc = TFNoRepeatNGramLogitsProcessor(2)
        no_bad_words_dist_proc = TFNoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)

        # no processor list
        scores = min_dist_proc(input_ids, scores)
        scores = rep_penalty_proc(input_ids, scores)
        scores = no_repeat_proc(input_ids, scores)
        scores = no_bad_words_dist_proc(input_ids, scores)

        # with processor list
        processor = TFLogitsProcessorList(
            [
                min_dist_proc,
                rep_penalty_proc,
                no_repeat_proc,
                no_bad_words_dist_proc,
            ]
        )
        scores_comp = processor(input_ids, scores_comp)

        # remove inf
        scores = set_tensor_by_indices_to_value(scores, tf.math.is_inf(scores), -1e9)
        scores_comp = set_tensor_by_indices_to_value(scores_comp, tf.math.is_inf(scores_comp), -1e9)

        # scores should be equal
        tf.debugging.assert_near(scores, scores_comp, atol=1e-3)

        # input_ids should never be changed
        self.assertListEqual(input_ids.numpy().tolist(), input_ids_comp.numpy().tolist())
예제 #4
0
    def test_repetition_penalty_dist_process(self):
        input_ids = tf.constant([[0, 1], [5, 0]], dtype=tf.int32)
        vocab_size = 10

        scores = self._get_uniform_logits(batch_size=2, length=vocab_size)

        mask = tf.cast(tf.constant([[1] + 9 * [0], 10 * [0]]), tf.bool)
        scores = set_tensor_by_indices_to_value(scores, mask, -1 / vocab_size)
        mask = tf.cast(tf.constant([10 * [0], 5 * [0] + [1] + 4 * [0]]), tf.bool)
        scores = set_tensor_by_indices_to_value(scores, mask, 4 / vocab_size)

        rep_penalty_proc = TFRepetitionPenaltyLogitsProcessor(penalty=2.0)

        scores = rep_penalty_proc(input_ids, tf.identity(scores))

        # check that values were correctly changed
        self.assertAlmostEqual(scores[0, 0].numpy(), -(1 / vocab_size) * 2)
        self.assertAlmostEqual(scores[0, 1].numpy(), (1 / vocab_size) / 2)

        self.assertAlmostEqual(scores[1, 0].numpy(), (1 / vocab_size) / 2)
        self.assertAlmostEqual(scores[1, 5].numpy(), (4 / vocab_size) / 2)