def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past, _ = model(next_input_ids, token_type_ids=next_token_type_ids) output_from_past, _ = model(next_tokens, token_type_ids=next_token_types, past=past) # select random slice random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_gpt2_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) # create attention mask half_seq_length = self.seq_length // 2 attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32) attn_mask_end = tf.zeros( (self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32) attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1) # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor( (1, ), half_seq_length).numpy() + 1 random_other_next_tokens = ids_tensor( (self.batch_size, self.seq_length), config.vocab_size) vector_condition = tf.range( self.seq_length) == (self.seq_length - random_seq_idx_to_change) condition = tf.transpose( tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))) input_ids = tf.where(condition, random_other_next_tokens, input_ids) # append to next input_ids and attn_mask next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) attn_mask = tf.concat([ attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32) ], axis=1) # get two different outputs output_from_no_past = model( next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = int( ids_tensor((1, ), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx] output_from_past_slice = output_from_past[:, 0, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
def test_model_from_pretrained(self): cache_dir = "/tmp/transformers_test/" for model_name in list( TF_gpt2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = TFGPT2Model.from_pretrained(model_name, cache_dir=cache_dir) shutil.rmtree(cache_dir) self.assertIsNotNone(model)
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) inputs = [input_ids, None, input_mask] # None is the input for 'past' result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} sequence_output = model(inputs)[0] inputs = [input_ids, None, input_mask] # None is the input for 'past' sequence_output = model(inputs)[0] sequence_output = model(input_ids)[0] result = { "sequence_output": sequence_output.numpy(), } self.parent.assertListEqual( list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size] )
def create_and_check_gpt2_model_past_large_inputs(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFGPT2Model(config=config) # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = tf.concat([input_ids, next_tokens], axis=-1) next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"] self.parent.assertTrue( output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = int( ids_tensor((1, ), shape_list(output_from_past)[-1])) output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx] output_from_past_slice = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def test_model_from_pretrained(self): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFGPT2Model.from_pretrained(model_name) self.assertIsNotNone(model)
def test_model_from_pretrained(self): for model_name in list( TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = TFGPT2Model.from_pretrained(model_name, cache_dir=CACHE_DIR) self.assertIsNotNone(model)