def test_model_from_pretrained(self): cache_dir = "/tmp/transformers_test/" for model_name in list( TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = TFOpenAIGPTModel.from_pretrained(model_name, cache_dir=cache_dir) shutil.rmtree(cache_dir) self.assertIsNotNone(model)
def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFOpenAIGPTModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFOpenAIGPTModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} sequence_output = model(inputs)[0] inputs = [input_ids, input_mask] sequence_output = model(inputs)[0] sequence_output = model(input_ids)[0] result = { "sequence_output": sequence_output.numpy(), } self.parent.assertListEqual( list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size] )
def test_model_from_pretrained(self): for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFOpenAIGPTModel.from_pretrained(model_name) self.assertIsNotNone(model)
def test_model_from_pretrained(self): for model_name in list( TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = TFOpenAIGPTModel.from_pretrained(model_name, cache_dir=CACHE_DIR) self.assertIsNotNone(model)