예제 #1
0
 def test_model_from_pretrained(self):
     cache_dir = "/tmp/transformers_test/"
     for model_name in list(
             TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
         model = TFOpenAIGPTModel.from_pretrained(model_name,
                                                  cache_dir=cache_dir)
         shutil.rmtree(cache_dir)
         self.assertIsNotNone(model)
예제 #2
0
    def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        result = model(inputs)

        inputs = [input_ids, input_mask]
        result = model(inputs)

        result = model(input_ids)

        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
예제 #3
0
        def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFOpenAIGPTModel(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            sequence_output = model(inputs)[0]

            inputs = [input_ids, input_mask]
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
예제 #4
0
 def test_model_from_pretrained(self):
     for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
         model = TFOpenAIGPTModel.from_pretrained(model_name)
         self.assertIsNotNone(model)
 def test_model_from_pretrained(self):
     for model_name in list(
             TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
         model = TFOpenAIGPTModel.from_pretrained(model_name,
                                                  cache_dir=CACHE_DIR)
         self.assertIsNotNone(model)