def main(): ds = load_dataset( data_args.dataset_name, data_args.dataset_config, data_files=data_args.data_files, cache_dir=model_args.cache_dir, task="image-classification", ) # If we don't have a validation split, split off a percentage of train as validation. data_args.train_val_split = None if "validation" in ds.keys( ) else data_args.train_val_split if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: split = ds["train"].train_test_split(data_args.train_val_split) ds["train"] = split["train"] ds["validation"] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. labels = ds["train"].features["labels"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # Load the accuracy metric from the datasets package metric = datasets.load_metric("accuracy") # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p): """Computes accuracy on a batch of predictions""" return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) config = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name, n_labels=len(labels), label2id=label2id, id2label=id2label, finetune="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_version, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForImageClassification.from_pretrained( model_args.model_name, from_tf=bool(".ckpt" in model_args.model_name), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_version, use_auth_token=True if model_args.use_auth_token else None, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor or model_args.model_name, cache_dir=model_args.cache_dir, revision=model_args.model_version, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) _train_transforms = Compose([ RandomResizedCrop(feature_extractor.size), RandomHorizontalFlip(), ToTensor(), normalize, ]) _val_transforms = Compose([ Resize(feature_extractor.size), CenterCrop(feature_extractor.size), ToTensor(), normalize, ]) def train_transforms(example_batch): """Apply _train_transforms across a batch.""" example_batch["pixel_values"] = [ _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] ] return example_batch def val_transforms(example_batch): """Apply _val_transforms across a batch.""" example_batch["pixel_values"] = [ _val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] ] return example_batch if training_args.do_train: if "train" not in ds: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: ds["train"] = (ds["train"].shuffle(seed=training_args.seed).select( range(data_args.max_train_samples))) # Set the training transforms ds["train"].set_transform(train_transforms) if training_args.do_eval: if "validation" not in ds: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: ds["validation"] = (ds["validation"].shuffle( seed=training_args.seed).select( range(data_args.max_eval_samples))) # Set the validation transforms ds["validation"].set_transform(val_transforms) # Initalize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=ds["train"] if training_args.do_train else None, eval_dataset=ds["validation"] if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=feature_extractor, data_collator=collate_fn, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub kw = { "finetuned_from": model_args.model_name, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**kw) else: trainer.create_model_card(**kw)
def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser( (ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses( ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir( training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir( training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome.") elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, task="image-classification", use_auth_token=True if model_args.use_auth_token else None, ) else: data_files = {} if data_args.train_dir is not None: data_files["train"] = os.path.join(data_args.train_dir, "**") if data_args.validation_dir is not None: data_files["validation"] = os.path.join(data_args.validation_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=model_args.cache_dir, task="image-classification", ) # If we don't have a validation split, split off a percentage of train as validation. data_args.train_val_split = None if "validation" in dataset.keys( ) else data_args.train_val_split if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: split = dataset["train"].train_test_split(data_args.train_val_split) dataset["train"] = split["train"] dataset["validation"] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. labels = dataset["train"].features["labels"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # Load the accuracy metric from the datasets package metric = datasets.load_metric("accuracy") # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p): """Computes accuracy on a batch of predictions""" return metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) config = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(labels), label2id=label2id, id2label=id2label, finetuning_task="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) model = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Define torchvision transforms to be applied to each image. normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) _train_transforms = Compose([ RandomResizedCrop(feature_extractor.size), RandomHorizontalFlip(), ToTensor(), normalize, ]) _val_transforms = Compose([ Resize(feature_extractor.size), CenterCrop(feature_extractor.size), ToTensor(), normalize, ]) def train_transforms(example_batch): """Apply _train_transforms across a batch.""" example_batch["pixel_values"] = [ _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] ] return example_batch def val_transforms(example_batch): """Apply _val_transforms across a batch.""" example_batch["pixel_values"] = [ _val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] ] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") if data_args.max_train_samples is not None: dataset["train"] = (dataset["train"].shuffle( seed=training_args.seed).select( range(data_args.max_train_samples))) # Set the training transforms dataset["train"].set_transform(train_transforms) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") if data_args.max_eval_samples is not None: dataset["validation"] = (dataset["validation"].shuffle( seed=training_args.seed).select( range(data_args.max_eval_samples))) # Set the validation transforms dataset["validation"].set_transform(val_transforms) # Initalize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"] if training_args.do_train else None, eval_dataset=dataset["validation"] if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=feature_extractor, data_collator=collate_fn, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs)
def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will pick up all supported trackers in the environment accelerator = Accelerator(log_with="all", logging_dir=args.output_dir) if args.with_tracking else Accelerator() logger.info(accelerator.state) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset(args.dataset_name, task="image-classification") else: data_files = {} if args.train_dir is not None: data_files["train"] = os.path.join(args.train_dir, "**") if args.validation_dir is not None: data_files["validation"] = os.path.join(args.validation_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, task="image-classification", ) # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder. # If we don't have a validation split, split off a percentage of train as validation. args.train_val_split = None if "validation" in dataset.keys() else args.train_val_split if isinstance(args.train_val_split, float) and args.train_val_split > 0.0: split = dataset["train"].train_test_split(args.train_val_split) dataset["train"] = split["train"] dataset["validation"] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. labels = dataset["train"].features["labels"].names label2id = {label: str(i) for i, label in enumerate(labels)} id2label = {str(i): label for i, label in enumerate(labels)} # Load pretrained model and feature extractor # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( args.model_name_or_path, num_labels=len(labels), i2label=id2label, label2id=label2id, finetuning_task="image-classification", ) feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_name_or_path) model = AutoModelForImageClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ignore_mismatched_sizes=args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Define torchvision transforms to be applied to each image. normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) train_transforms = Compose( [ RandomResizedCrop(feature_extractor.size), RandomHorizontalFlip(), ToTensor(), normalize, ] ) val_transforms = Compose( [ Resize(feature_extractor.size), CenterCrop(feature_extractor.size), ToTensor(), normalize, ] ) def preprocess_train(example_batch): """Apply _train_transforms across a batch.""" example_batch["pixel_values"] = [train_transforms(image.convert("RGB")) for image in example_batch["image"]] return example_batch def preprocess_val(example_batch): """Apply _val_transforms across a batch.""" example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]] return example_batch with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) if args.max_eval_samples is not None: dataset["validation"] = dataset["validation"].shuffle(seed=args.seed).select(range(args.max_eval_samples)) # Set the validation transforms eval_dataset = dataset["validation"].with_transform(preprocess_val) # DataLoaders creation: def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) labels = torch.tensor([example["labels"] for example in examples]) return {"pixel_values": pixel_values, "labels": labels} train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=collate_fn, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Figure out how many steps we should save the Accelerator states if hasattr(args.checkpointing_steps, "isdigit"): checkpointing_steps = args.checkpointing_steps if args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("image_classification_no_trainer", experiment_config) # Get the metric function metric = load_metric("accuracy") # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None else: resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 for step, batch in enumerate(train_dataloader): # We need to skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == starting_epoch: if resume_step is not None and step < resume_step: completed_steps += 1 continue outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps }" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save, ) if accelerator.is_main_process: feature_extractor.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress {completed_steps} steps", blocking=False, auto_lfs_prune=True, ) if completed_steps >= args.max_train_steps: break model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather((predictions, batch["labels"])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.num_processes > 1: if step == len(eval_dataloader) - 1: predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] references = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() logger.info(f"epoch {epoch}: {eval_metric}") if args.with_tracking: accelerator.log( { "accuracy": eval_metric, "train_loss": total_loss, "epoch": epoch, "step": completed_steps, }, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: feature_extractor.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: feature_extractor.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) if args.output_dir is not None: with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump({"eval_accuracy": eval_metric["accuracy"]}, f)