def create_and_check_bert_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): config.num_choices = self.num_choices model = BertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand( -1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze( 1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand( -1, self.num_choices, -1).contiguous() loss, logits = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) result = { "loss": loss, "logits": logits, } self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices]) self.check_loss_output(result)
def evaluate(classifier_model: BertForMultipleChoice, dataloader: DataLoader, device: torch.device): """ モデルの評価を行う。 結果やラベルはDict形式で返される。 """ classifier_model.eval() count_steps = 0 total_loss = 0 preds = None correct_labels = None for batch_idx, batch in enumerate(tqdm(dataloader)): with torch.no_grad(): batch = tuple(t for t in batch) bert_inputs = { "input_ids": batch[0].to(device), "attention_mask": batch[1].to(device), "token_type_ids": batch[2].to(device), "labels": batch[3].to(device) } classifier_outputs = classifier_model(**bert_inputs) loss, logits = classifier_outputs[:2] count_steps += 1 total_loss += loss.item() if preds is None: preds = logits.detach().cpu().numpy() correct_labels = bert_inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) correct_labels = np.append( correct_labels, bert_inputs["labels"].detach().cpu().numpy(), axis=0) pred_labels = np.argmax(preds, axis=1) accuracy = calc_accuracy(pred_labels, correct_labels) eval_loss = total_loss / count_steps ret = { "pred_labels": pred_labels, "correct_labels": correct_labels, "logits": preds, "accuracy": accuracy, "eval_loss": eval_loss } return ret
def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = BertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))