def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RoFormerModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def test_model_from_pretrained(self): for model_name in ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RoFormerModel.from_pretrained(model_name) self.assertIsNotNone(model)