예제 #1
0
    def fit_and_train(self, train_df, val_df, val_train_df, require_grad):

        NUM_LABELS = 2
        max_value = 0
        best_model = None

        tokenizer = RobertaTokenizer.from_pretrained(pre_trained_model_name,
                                                     do_lower_case=True)

        trainset = DialogueDataset(train_df, "train", tokenizer=tokenizer)
        trainloader = DataLoader(trainset,
                                 batch_size=self.batch_size,
                                 collate_fn=self.create_mini_batch)

        val_trainset = DialogueDataset(val_train_df,
                                       "train",
                                       tokenizer=tokenizer)
        val_trainloader = DataLoader(val_trainset,
                                     batch_size=self.batch_size,
                                     collate_fn=self.create_mini_batch)

        valset = DialogueDataset(val_df, 'test', tokenizer=tokenizer)
        valloader = DataLoader(valset,
                               batch_size=val_batch_size,
                               collate_fn=self.create_mini_batch)

        config = RobertaConfig.from_pretrained(pre_trained_model_name)
        config.num_labels = 2
        config.type_vocab_size = 2

        model = RobertaForSequenceClassification(config)
        # model = CustomRobertatModel()
        # model = BertForSequenceClassification.from_pretrained(pre_trained_model_name, num_labels=NUM_LABELS)
        # model = BertForNextSentencePrediction.from_pretrained(pre_trained_model_name)
        # if require_grad:
        #   for param in model.parameters():
        #     param.requires_grad = True
        model.train()

        if self.gpu:
            model = model.cuda(device)
        for epo in range(self.epoch):
            total = 0
            total_loss = 0

            # optimizer = AdamW(model.parameters(),
            #       lr = self.lr, # args.learning_rate - default is 5e-5, our notebook had 2e-5
            #       eps = 1e-8 # args.adam_epsilon  - default is 1e-8.
            #     )

            optimizer = optim.Adam(model.parameters(),
                                   lr=self.lr,
                                   betas=(0.9, 0.98),
                                   weight_decay=0.01,
                                   eps=1e-6)

            # Total number of training steps is number of batches * number of epochs.
            total_steps = len(trainloader) * self.epoch

            # Create the learning rate scheduler.
            scheduler = get_linear_schedule_with_warmup(optimizer,
                                                        warmup_steps=1000,
                                                        t_total=total_steps)

            for data in trainloader:
                if self.gpu:
                    tokens_tensors, segments_tensors, \
                    masks_tensors, labels = [x.type(torch.LongTensor).cuda(device) for x in data]
                else:
                    tokens_tensors, segments_tensors, \
                    masks_tensors, labels = [x for x in data]
                outputs = model(input_ids=tokens_tensors,
                                token_type_ids=segments_tensors,
                                attention_mask=masks_tensors,
                                labels=labels)
                # (tensor(0.6968, grad_fn=<NllLossBackward>), tensor([[-0.0359, -0.0432]], grad_fn=<AddmmBackward>))
                loss = outputs[0]
                # (tensor(0.0086, device='cuda:1', grad_fn=<NllLossBackward>), tensor([[ 2.3423, -2.4149]], device='cuda:1', grad_fn=<AddmmBackward>))

                loss.backward(
                )  # calculate gradientopt = torch.optim.SGD(model.parameters(), lr=self.lr,  momentum=0.9)
                # opt = torch.optim.Adam(model.parameters(), lr = self.lr)
                # opt = torch.optim.SGD(model.parameters(), lr=self.lr, momentum=0.9)
                # opt.step() #update parameter
                # opt.zero_grad()

                # Clip the norm of the gradients to 1.0.
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                # Update parameters and take a step using the computed gradient
                optimizer.step()

                # Update the learning rate.
                scheduler.step()

                # Clear out the gradients (by default they accumulate)
                model.zero_grad()

                total += len(tokens_tensors)
                total_loss += loss.item() * len(tokens_tensors)

                # outputs = model(input_ids=tokens_tensors, token_type_ids=segments_tensors, attention_mask=masks_tensors)
                # loss_f = nn.CrossEntropyLoss()
                # loss = loss_f(outputs[0], labels)
                # loss.backward() # calculate gradientopt = torch.optim.SGD(model.parameters(), lr=self.lr,  momentum=0.9)
                # opt = torch.optim.Adam(model.parameters(), lr = self.lr)
                # opt.step() #update parameter
                # opt.zero_grad()
                # total += len(tokens_tensors)
                # total_loss += loss.item() * len(tokens_tensors)

                del data, tokens_tensors, segments_tensors, \
                    masks_tensors, labels

                print(f'Epoch : {epo+1}/{self.epoch} , Training Loss : {loss}',
                      end='\r')
            self.loss_list.append(total_loss / total)
            print(
                f'Epoch : {epo+1}/{self.epoch} , Training Loss : {self.loss_list[epo]}',
                end=',')

            with open(f'./train_loss_{model_type}.txt', 'w') as f:
                for i in self.loss_list:
                    f.write(str(i) + '\n')

            model.eval()
            numebr = 0

            ans = []
            with torch.no_grad():
                for data in valloader:
                    if self.gpu:
                        tokens_tensors, segments_tensors, masks_tensors, _ = [
                            x.type(torch.LongTensor).cuda(device)
                            if x is not None else None for x in data
                        ]
                    else:
                        tokens_tensors, segments_tensors, masks_tensors, _ = [
                            x for x in data
                        ]
                    outputs = model(
                        input_ids=tokens_tensors,
                        token_type_ids=segments_tensors,
                        attention_mask=masks_tensors,
                    )
                    #      (tensor([[-0.0359, -0.0432]], grad_fn=<AddmmBackward>))
                    values = outputs[0].data[:, 1].tolist()
                    ans += values
                    print(f'count : {numebr}', end='\r')
                    numebr += val_batch_size

                count = 0
                val_len = 0
                val_df['prob'] = ans
                groups = val_df.groupby('question')
                for index, data in groups:
                    val_len += 1
                    if 'candidate_id' in val_df.columns:
                        pred_id = data.loc[data['prob'].idxmax(),
                                           'candidate_id']
                        if data.loc[data['prob'].idxmax(), 'ans'] == pred_id:
                            count += 1

                val_accu = count / val_len
                if val_accu >= max_value:
                    max_value = val_accu
                    self.model = model
                    best_model = model
                    torch.save(model.state_dict(),
                               f'./model/{model_name}_torch_dict')
                self.val_accu_list.append(val_accu)

                print(
                    f'Epoch : {epo+1}/{self.epoch}, Validation Accuracy : {self.val_accu_list[epo]}',
                    end=',')
                with open(f'./val_accu_{model_type}.txt', 'w') as f:
                    for i in self.val_accu_list:
                        f.write(str(i) + '\n')

        ## Eventually fine tuned with validation data

        for epo in range(val_fine_tuned_epo):
            total = 0
            total_loss = 0

            optimizer = AdamW(
                best_model.parameters(),
                lr=self.
                lr,  # args.learning_rate - default is 5e-5, our notebook had 2e-5
                eps=1e-8  # args.adam_epsilon  - default is 1e-8.
            )
            total_steps = len(val_trainloader) * 1
            scheduler = get_linear_schedule_with_warmup(optimizer,
                                                        warmup_steps=10,
                                                        t_total=total_steps)

            for data in val_trainloader:
                if self.gpu:
                    tokens_tensors, segments_tensors, \
                    masks_tensors, labels = [x.type(torch.LongTensor).cuda(device) for x in data]
                else:
                    tokens_tensors, segments_tensors, \
                    masks_tensors, labels = [x for x in data]
                outputs = best_model(input_ids=tokens_tensors,
                                     token_type_ids=segments_tensors,
                                     attention_mask=masks_tensors,
                                     labels=labels)
                loss = outputs[0]
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
                scheduler.step()
                model.zero_grad()

                total += len(tokens_tensors)
                total_loss += loss.item() * len(tokens_tensors)
                del data, tokens_tensors, segments_tensors, \
                    masks_tensors, labels

        # check if fine tune with validation work
        torch.save(best_model.state_dict(),
                   f'./model/{model_name}_torch_dict_tuned_val')
예제 #2
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        choices=["vlsp_2018_single", \
                                "vlsp_2018_NLI_M", "vlsp_2018_QA_M", "vlsp_2018_NLI_B", "vlsp_2018_QA_B"],
                        help="The name of the task to train.")
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--vocab_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--bert_config_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The config json file corresponding to the pre-trained BERT model. \n"
                             "This specifies the model architecture.")
    parser.add_argument('--bpe-codes', 
                        default=None,
                        required=True,
                        type=str,  
                        help='path to fastBPE BPE')
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")
    parser.add_argument("--init_checkpoint",
                        default=None,
                        type=str,
                        required=True,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")
    
    ## Other parameters
    parser.add_argument("--do_save_model",
                        default=False,
                        action='store_true',
                        help="Whether to save checkpoint.")
    parser.add_argument("--eval_test",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the test set.")                    
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--accumulate_gradients",
                        type=int,
                        default=1,
                        help="Number of steps to accumulate gradient on (divide the batch_size and accumulate)")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed', 
                        type=int, 
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")                       
    args = parser.parse_args()


    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))

    if args.accumulate_gradients < 1:
        raise ValueError("Invalid accumulate_gradients parameter: {}, should be >= 1".format(
                            args.accumulate_gradients))

    args.train_batch_size = int(args.train_batch_size / args.accumulate_gradients)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    # prepare dataloaders
    processors = {
        "vlsp_2018_single":VLSP_2018_single_Processor,
        "vlsp_2018_NLI_M":VLSP_2018_NLI_M_Processor,
        "vlsp_2018_QA_M":VLSP_2018_QA_M_Processor,
        "vlsp_2018_NLI_B":VLSP_2018_NLI_B_Processor,
        "vlsp_2018_QA_B":VLSP_2018_QA_B_Processor,
    }

    processor = processors[args.task_name]()
    label_list = processor.get_labels()

    bert_config = RobertaConfig.from_pretrained(args.bert_config_file)
    bert_config.num_labels = len(label_list)
    
    
    label2id = {}
    id2label = {}
    for (i, label) in enumerate(label_list):
        label2id[label] = i
        id2label[str(i)] = label

    bert_config.label2id = label2id
    bert_config.id2label = id2label

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
            args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    os.makedirs(args.output_dir, exist_ok=True)

    bpe = fastBPE(args)
    vocab = Dictionary()
    vocab.add_from_file(args.vocab_file)

    # training set
    train_examples = None
    num_train_steps = None
    train_examples = processor.get_train_examples(args.data_dir)
    num_train_steps = int(
        len(train_examples) / args.train_batch_size * args.num_train_epochs)

    train_features = convert_examples_to_features(
        train_examples, label_list, args.max_seq_length, bpe, vocab)
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_examples))
    logger.info("  Batch size = %d", args.train_batch_size)
    logger.info("  Num steps = %d", num_train_steps)

    all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
    all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)

    train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    if args.local_rank == -1:
        train_sampler = RandomSampler(train_data)
    else:
        train_sampler = DistributedSampler(train_data)
    train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)


    # dev set
    dev_examples = processor.get_dev_examples(args.data_dir)
    dev_features = convert_examples_to_features(
        dev_examples, label_list, args.max_seq_length, bpe, vocab)
    
    all_dev_input_ids = torch.tensor([f.input_ids for f in dev_features], dtype=torch.long)
    all_dev_input_mask = torch.tensor([f.input_mask for f in dev_features], dtype=torch.long)
    all_dev_segment_ids = torch.tensor([f.segment_ids for f in dev_features], dtype=torch.long)
    all_dev_label_ids = torch.tensor([f.label_id for f in dev_features], dtype=torch.long)

    dev_data = TensorDataset(all_dev_input_ids, all_dev_input_mask, all_dev_segment_ids, all_dev_label_ids)
    dev_dataloader = DataLoader(dev_data, batch_size=args.eval_batch_size, shuffle=False)

    # test set
    if args.eval_test:
        test_examples = processor.get_test_examples(args.data_dir)
        test_features = convert_examples_to_features(
            test_examples, label_list, args.max_seq_length, bpe, vocab)

        all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in test_features], dtype=torch.long)

        test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        test_dataloader = DataLoader(test_data, batch_size=args.eval_batch_size, shuffle=False)


    # model and optimizer
    model = RobertaForSequenceClassification(bert_config)

    if args.init_checkpoint is not None:
        model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    no_decay = ['bias', 'gamma', 'beta']
    optimizer_parameters = [
         {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
         {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
         ]
	
    optimizer = BERTAdam(optimizer_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)


    # train
    output_log_file = os.path.join(args.output_dir, "log.txt")
    print("output_log_file=",output_log_file)
    with open(output_log_file, "w") as writer:
        if args.eval_test:
            writer.write("epoch\tglobal_step\tloss\tdev_loss\tdev_accuracy\ttest_loss\ttest_accuracy\n")
        else:
            writer.write("epoch\tglobal_step\tloss\n")
    
    global_step = 0
    epoch=0
    for _ in trange(int(args.num_train_epochs), desc="Epoch"):
        epoch+=1
        model.train()
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids, label_ids = batch
            #RoBERTa not use token_type_ids
            loss, logits = model(input_ids=input_ids, attention_mask=input_mask, labels=label_ids)
            if n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            loss.backward()
            tr_loss += loss.item()
            nb_tr_examples += input_ids.size(0)
            nb_tr_steps += 1
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()    # We have accumulated enought gradients
                model.zero_grad()
                global_step += 1
        
        if(args.do_save_model):
            if(n_gpu > 1):
                torch.save(model.module.state_dict(), os.path.join(args.output_dir, 'model_ep' + str(epoch) + '.bin'))
            else:
                torch.save(model.state_dict(), os.path.join(args.output_dir, 'model_ep' + str(epoch) + '.bin'))

        #dev eval
        model.eval()
        dev_loss, dev_accuracy = 0, 0
        nb_dev_steps, nb_dev_examples = 0, 0
        with open(os.path.join(args.output_dir, "dev_ep_"+str(epoch)+".txt"),"w") as f_dev:
            for input_ids, input_mask, segment_ids, label_ids in dev_dataloader:
                input_ids = input_ids.to(device)
                input_mask = input_mask.to(device)
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                with torch.no_grad():
                    tmp_dev_test_loss, logits = model(input_ids=input_ids, attention_mask=input_mask, labels=label_ids)

                logits = F.softmax(logits, dim=-1)
                logits = logits.detach().cpu().numpy()
                label_ids = label_ids.to('cpu').numpy()
                outputs = np.argmax(logits, axis=1)
                for output_i in range(len(outputs)):
                    f_dev.write(str(outputs[output_i]))
                    for ou in logits[output_i]:
                        f_dev.write(" "+str(ou))
                    f_dev.write("\n")
                tmp_dev_accuracy=np.sum(outputs == label_ids)

                dev_loss += tmp_dev_test_loss.mean().item()
                dev_accuracy += tmp_dev_accuracy

                nb_dev_examples += input_ids.size(0)
                nb_dev_steps += 1

        dev_loss = dev_loss / nb_dev_steps
        dev_accuracy = dev_accuracy / nb_dev_examples

        # eval_test
        if args.eval_test:
            model.eval()
            test_loss, test_accuracy = 0, 0
            nb_test_steps, nb_test_examples = 0, 0
            with open(os.path.join(args.output_dir, "test_ep_"+str(epoch)+".txt"),"w") as f_test:
                for input_ids, input_mask, segment_ids, label_ids in test_dataloader:
                    input_ids = input_ids.to(device)
                    input_mask = input_mask.to(device)
                    segment_ids = segment_ids.to(device)
                    label_ids = label_ids.to(device)

                    with torch.no_grad():
                        tmp_test_loss, logits = model(input_ids=input_ids, attention_mask=input_mask, labels=label_ids)

                    logits = F.softmax(logits, dim=-1)
                    logits = logits.detach().cpu().numpy()
                    label_ids = label_ids.to('cpu').numpy()
                    outputs = np.argmax(logits, axis=1)
                    for output_i in range(len(outputs)):
                        f_test.write(str(outputs[output_i]))
                        for ou in logits[output_i]:
                            f_test.write(" "+str(ou))
                        f_test.write("\n")
                    tmp_test_accuracy=np.sum(outputs == label_ids)

                    test_loss += tmp_test_loss.mean().item()
                    test_accuracy += tmp_test_accuracy

                    nb_test_examples += input_ids.size(0)
                    nb_test_steps += 1

            test_loss = test_loss / nb_test_steps
            test_accuracy = test_accuracy / nb_test_examples


        result = collections.OrderedDict()
        if args.eval_test:
            result = {'epoch': epoch,
                    'global_step': global_step,
                    'loss': tr_loss/nb_tr_steps,
                    'dev_loss': dev_loss,
                    'dev_accuracy': dev_accuracy,
                    'test_loss': test_loss,
                    'test_accuracy': test_accuracy}
        else:
            result = {'epoch': epoch,
                    'global_step': global_step,
                    'loss': tr_loss/nb_tr_steps}

        logger.info("***** Eval results *****")
        with open(output_log_file, "a+") as writer:
            for key in result.keys():
                logger.info("  %s = %s\n", key, str(result[key]))
                writer.write("%s\t" % (str(result[key])))
            writer.write("\n")
def convert_roberta_checkpoint_to_pytorch(
    roberta_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool
):
    """
    Copy/paste/tweak roberta's weights to our BERT structure.
    """
    roberta = FairseqRobertaModel.from_pretrained(roberta_checkpoint_path)
    roberta.eval()  # disable dropout
    roberta_sent_encoder = roberta.model.encoder.sentence_encoder
    config = RobertaConfig(
        vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings,
        hidden_size=roberta.args.encoder_embed_dim,
        num_hidden_layers=roberta.args.encoder_layers,
        num_attention_heads=roberta.args.encoder_attention_heads,
        intermediate_size=roberta.args.encoder_ffn_embed_dim,
        max_position_embeddings=514,
        type_vocab_size=1,
        layer_norm_eps=1e-5,  # PyTorch default used in fairseq
    )
    if classification_head:
        config.num_labels = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
    print("Our BERT config:", config)

    model = RobertaForSequenceClassification(config) if classification_head else RobertaForMaskedLM(config)
    model.eval()

    # Now let's copy all the weights.
    # Embeddings
    model.roberta.embeddings.word_embeddings.weight = roberta_sent_encoder.embed_tokens.weight
    model.roberta.embeddings.position_embeddings.weight = roberta_sent_encoder.embed_positions.weight
    model.roberta.embeddings.token_type_embeddings.weight.data = torch.zeros_like(
        model.roberta.embeddings.token_type_embeddings.weight
    )  # just zero them out b/c RoBERTa doesn't use them.
    model.roberta.embeddings.LayerNorm.weight = roberta_sent_encoder.emb_layer_norm.weight
    model.roberta.embeddings.LayerNorm.bias = roberta_sent_encoder.emb_layer_norm.bias

    for i in range(config.num_hidden_layers):
        # Encoder: start of layer
        layer: BertLayer = model.roberta.encoder.layer[i]
        roberta_layer: TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]

        # self attention
        self_attn: BertSelfAttention = layer.attention.self
        assert (
            roberta_layer.self_attn.k_proj.weight.data.shape
            == roberta_layer.self_attn.q_proj.weight.data.shape
            == roberta_layer.self_attn.v_proj.weight.data.shape
            == torch.Size((config.hidden_size, config.hidden_size))
        )

        self_attn.query.weight.data = roberta_layer.self_attn.q_proj.weight
        self_attn.query.bias.data = roberta_layer.self_attn.q_proj.bias
        self_attn.key.weight.data = roberta_layer.self_attn.k_proj.weight
        self_attn.key.bias.data = roberta_layer.self_attn.k_proj.bias
        self_attn.value.weight.data = roberta_layer.self_attn.v_proj.weight
        self_attn.value.bias.data = roberta_layer.self_attn.v_proj.bias

        # self-attention output
        self_output: BertSelfOutput = layer.attention.output
        assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
        self_output.dense.weight = roberta_layer.self_attn.out_proj.weight
        self_output.dense.bias = roberta_layer.self_attn.out_proj.bias
        self_output.LayerNorm.weight = roberta_layer.self_attn_layer_norm.weight
        self_output.LayerNorm.bias = roberta_layer.self_attn_layer_norm.bias

        # intermediate
        intermediate: BertIntermediate = layer.intermediate
        assert intermediate.dense.weight.shape == roberta_layer.fc1.weight.shape
        intermediate.dense.weight = roberta_layer.fc1.weight
        intermediate.dense.bias = roberta_layer.fc1.bias

        # output
        bert_output: BertOutput = layer.output
        assert bert_output.dense.weight.shape == roberta_layer.fc2.weight.shape
        bert_output.dense.weight = roberta_layer.fc2.weight
        bert_output.dense.bias = roberta_layer.fc2.bias
        bert_output.LayerNorm.weight = roberta_layer.final_layer_norm.weight
        bert_output.LayerNorm.bias = roberta_layer.final_layer_norm.bias
        # end of layer

    if classification_head:
        model.classifier.dense.weight = roberta.model.classification_heads["mnli"].dense.weight
        model.classifier.dense.bias = roberta.model.classification_heads["mnli"].dense.bias
        model.classifier.out_proj.weight = roberta.model.classification_heads["mnli"].out_proj.weight
        model.classifier.out_proj.bias = roberta.model.classification_heads["mnli"].out_proj.bias
    else:
        # LM Head
        model.lm_head.dense.weight = roberta.model.encoder.lm_head.dense.weight
        model.lm_head.dense.bias = roberta.model.encoder.lm_head.dense.bias
        model.lm_head.layer_norm.weight = roberta.model.encoder.lm_head.layer_norm.weight
        model.lm_head.layer_norm.bias = roberta.model.encoder.lm_head.layer_norm.bias
        model.lm_head.decoder.weight = roberta.model.encoder.lm_head.weight
        model.lm_head.decoder.bias = roberta.model.encoder.lm_head.bias

    # Let's check that we get the same results.
    input_ids: torch.Tensor = roberta.encode(SAMPLE_TEXT).unsqueeze(0)  # batch of size 1

    our_output = model(input_ids)[0]
    if classification_head:
        their_output = roberta.model.classification_heads["mnli"](roberta.extract_features(input_ids))
    else:
        their_output = roberta.model(input_ids)[0]
    print(our_output.shape, their_output.shape)
    max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
    print(f"max_absolute_diff = {max_absolute_diff}")  # ~ 1e-7
    success = torch.allclose(our_output, their_output, atol=1e-3)
    print("Do both models output the same tensors?", "🔥" if success else "💩")
    if not success:
        raise Exception("Something went wRoNg")

    pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
    print(f"Saving model to {pytorch_dump_folder_path}")
    model.save_pretrained(pytorch_dump_folder_path)