def test_model_for_pretraining_from_pretrained(self):
        model_name = "bert-base-cased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)

        model = TFAutoModelForPreTraining.from_pretrained(model_name)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, TFBertForPreTraining)
예제 #2
0
    def test_model_for_pretraining_from_pretrained(self):
        import h5py

        self.assertTrue(h5py.version.hdf5_version.startswith("1.10"))

        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForPreTraining.from_pretrained(model_name)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForPreTraining)
    def test_model_for_pretraining_from_pretrained(self):
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
        for model_name in ["bert-base-uncased"]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = TFAutoModelForPreTraining.from_pretrained(model_name,
                                                              from_pt=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TFBertForPreTraining)

            model = AutoModelForPreTraining.from_pretrained(model_name,
                                                            from_tf=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
예제 #4
0
 def model(self):
     from transformers import TFAutoModelForPreTraining
     model = TFAutoModelForPreTraining.from_pretrained(
         self.pretrained_model_name_or_path)
     self.to_device()
     return model
예제 #5
0
 def get_model(self):
     from transformers import TFAutoModelForPreTraining
     _model = TFAutoModelForPreTraining.from_pretrained(
         self.pretrained_model_name_or_path)
     return _model