def test_TFXLMForSequenceClassification(self): from transformers import XLMTokenizer, TFXLMForSequenceClassification pretrained_weights = 'xlm-mlm-enfr-1024' tokenizer = XLMTokenizer.from_pretrained(pretrained_weights) text, inputs, inputs_onnx = self._prepare_inputs(tokenizer) model = TFXLMForSequenceClassification.from_pretrained( pretrained_weights) predictions = model.predict(inputs) onnx_model = keras2onnx.convert_keras(model, model.name) self.assertTrue( run_onnx_runtime(onnx_model.graph.name, onnx_model, inputs_onnx, predictions, self.model_files))
train_id = np.array(padded_ids_train) train_mask = np.array(mask_ids_train) test_id = np.array(padded_ids_test) test_mask = np.array(mask_ids_test) # *************** ARQUITECTURA **************** input_1 = tf.keras.Input(shape=(128), dtype=np.int32) input_2 = tf.keras.Input(shape=(128), dtype=np.int32) #model = TFBertForSequenceClassification.from_pretrained("/home/murat/datasets/pytorch", from_pt=True) #model = TFBertForSequenceClassification.from_pretrained('bert-base-multilingual-cased') #model = TFBertForSequenceClassification.from_pretrained('bert-base-cased') #model = TFBertForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", from_pt=True) model = TFXLMForSequenceClassification.from_pretrained('xlm-mlm-17-1280', from_pt=True) output = model([input_1, input_2], training=True) answer = tf.keras.layers.Dense(7, activation=tf.nn.sigmoid)(output[0]) model = tf.keras.Model(inputs=[input_1, input_2], outputs=[answer]) model.summary() #model.load_weights("./checkpoints_padchest/xlm17_en_semilla1.h5") # ********* OPTIMIZADOR , CHECKPOINTS Y CLASSWEIGHTS ***************** d_frecuencias = json.load( open( "/scratch/codigofsoler/baseDeDatos/diccionarios/d_frecuencias_5zonas_sin_diagnosticos.json" )) nsamples = len(data)