예제 #1
0
    def test_inference(self):
        model = VisionTextDualEncoderModel.from_pretrained(
            "clip-italian/clip-italian", logit_scale_init_value=1)
        processor = VisionTextDualEncoderProcessor.from_pretrained(
            "clip-italian/clip-italian")

        image = Image.open(
            "./tests/fixtures/tests_samples/COCO/000000039769.png")
        inputs = processor(
            text=["una foto di un gatto", "una foto di un cane"],
            images=image,
            padding=True,
            return_tensors="pt")

        outputs = model(**inputs)

        # verify the logits
        self.assertEqual(
            outputs.logits_per_image.shape,
            (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]))
        self.assertEqual(
            outputs.logits_per_text.shape,
            (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]),
        )

        expected_logits = torch.tensor([[1.2284727, 0.3104122]])

        self.assertTrue(
            torch.allclose(outputs.logits_per_image,
                           expected_logits,
                           atol=1e-3))
예제 #2
0
    def test_save_load_pretrained_additional_features(self):
        processor = VisionTextDualEncoderProcessor(
            tokenizer=self.get_tokenizer(),
            feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)",
                                                  eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(
            do_normalize=False, padding_value=1.0)

        processor = VisionTextDualEncoderProcessor.from_pretrained(
            self.tmpdirname,
            bos_token="(BOS)",
            eos_token="(EOS)",
            do_normalize=False,
            padding_value=1.0)

        self.assertEqual(processor.tokenizer.get_vocab(),
                         tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer,
                              (BertTokenizer, BertTokenizerFast))

        self.assertEqual(processor.feature_extractor.to_json_string(),
                         feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, ViTFeatureExtractor)
예제 #3
0
    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = VisionTextDualEncoderProcessor(
            tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = VisionTextDualEncoderProcessor.from_pretrained(
            self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(),
                         tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer,
                              (BertTokenizer, BertTokenizerFast))

        self.assertEqual(processor.feature_extractor.to_json_string(),
                         feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, ViTFeatureExtractor)