def test_inference_large(self): model = WavLMModel.from_pretrained("microsoft/wavlm-large").to( torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-large", return_attention_mask=True) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = (model( input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu()) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor([[[0.2122, 0.0500], [0.2118, 0.0563]], [[0.1353, 0.1818], [0.2453, 0.0595]]]) self.assertTrue( torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, rtol=5e-2))
def test_inference_base(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus").to( torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-base-plus", return_attention_mask=True) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = (model( input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu()) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor([[[0.0577, 0.1161], [0.0579, 0.1165]], [[0.0199, 0.1237], [0.0059, 0.0605]]]) # TODO: update the tolerance after the CI moves to torch 1.10 self.assertTrue( torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, atol=5e-2))
def test_model_from_pretrained(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus") self.assertIsNotNone(model)