def main(parser_data):
    device = torch.device(parser_data.device if torch.cuda.is_available() else "cpu")
    print("Using {} device training.".format(device.type))

    data_transform = {
        "val": transforms.Compose([transforms.Resize(),
                                   transforms.ToTensor(),
                                   transforms.Normalization()])
    }

    # read class_indict
    label_json_path = './pascal_voc_classes.json'
    assert os.path.exists(label_json_path), "json file {} dose not exist.".format(label_json_path)
    json_file = open(label_json_path, 'r')
    class_dict = json.load(json_file)
    json_file.close()
    category_index = {v: k for k, v in class_dict.items()}

    VOC_root = parser_data.data_path
    # check voc root
    if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
        raise FileNotFoundError("VOCdevkit dose not in path:'{}'.".format(VOC_root))

    # 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
    batch_size = parser_data.batch_size
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using %g dataloader workers' % nw)

    # load validation data set
    # VOCdevkit -> VOC2012 -> ImageSets -> Main -> val.txt
    val_dataset = VOCDataSet(VOC_root, "2012", transforms=data_transform["val"], train_set="val.txt")
    val_dataset_loader = torch.utils.data.DataLoader(val_dataset,
                                                     batch_size=batch_size,
                                                     shuffle=False,
                                                     num_workers=nw,
                                                     pin_memory=True,
                                                     collate_fn=val_dataset.collate_fn)

    # create model num_classes equal background + 20 classes
    backbone = Backbone()
    model = SSD300(backbone=backbone, num_classes=parser_data.num_classes + 1)

    # 载入你自己训练好的模型权重
    weights_path = parser_data.weights
    assert os.path.exists(weights_path), "not found {} file.".format(weights_path)
    model.load_state_dict(torch.load(weights_path, map_location=device)['model'])
    # print(model)

    model.to(device)

    # evaluate on the test dataset
    coco = get_coco_api_from_dataset(val_dataset)
    iou_types = ["bbox"]
    coco_evaluator = CocoEvaluator(coco, iou_types)
    cpu_device = torch.device("cpu")

    model.eval()
    with torch.no_grad():
        for images, targets in tqdm(val_dataset_loader, desc="validation..."):
            # 将图片传入指定设备device
            images = torch.stack(images, dim=0).to(device)

            # inference
            results = model(images)

            outputs = []
            for index, (bboxes_out, labels_out, scores_out) in enumerate(results):
                # 将box的相对坐标信息(0-1)转为绝对值坐标(xmin, ymin, xmax, ymax)
                height_width = targets[index]["height_width"]
                # 还原回原图尺度
                bboxes_out[:, [0, 2]] = bboxes_out[:, [0, 2]] * height_width[1]
                bboxes_out[:, [1, 3]] = bboxes_out[:, [1, 3]] * height_width[0]

                info = {"boxes": bboxes_out.to(cpu_device),
                        "labels": labels_out.to(cpu_device),
                        "scores": scores_out.to(cpu_device)}
                outputs.append(info)

            res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
            coco_evaluator.update(res)

    coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    coco_evaluator.accumulate()
    coco_evaluator.summarize()

    coco_eval = coco_evaluator.coco_eval["bbox"]
    # calculate COCO info for all classes
    coco_stats, print_coco = summarize(coco_eval)

    # calculate voc info for every classes(IoU=0.5)
    voc_map_info_list = []
    for i in range(len(category_index)):
        stats, _ = summarize(coco_eval, catId=i)
        voc_map_info_list.append(" {:15}: {}".format(category_index[i + 1], stats[1]))

    print_voc = "\n".join(voc_map_info_list)
    print(print_voc)

    # 将验证结果保存至txt文件中
    with open("record_mAP.txt", "w") as f:
        record_lines = ["COCO results:",
                        print_coco,
                        "",
                        "mAP(IoU=0.5) for each category:",
                        print_voc]
        f.write("\n".join(record_lines))
예제 #2
0
def main(parser_data):
    device = torch.device(
        parser_data.device if torch.cuda.is_available() else "cpu")
    print("Using {} device training.".format(device.type))

    if not os.path.exists("save_weights"):
        os.mkdir("save_weights")

    results_file = "results{}.txt".format(
        datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

    data_transform = {
        "train":
        transforms.Compose([
            transforms.SSDCropping(),
            transforms.Resize(),
            transforms.ColorJitter(),
            transforms.ToTensor(),
            transforms.RandomHorizontalFlip(),
            transforms.Normalization(),
            transforms.AssignGTtoDefaultBox()
        ]),
        "val":
        transforms.Compose([
            transforms.Resize(),
            transforms.ToTensor(),
            transforms.Normalization()
        ])
    }

    VOC_root = parser_data.data_path
    # check voc root
    if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
        raise FileNotFoundError(
            "VOCdevkit dose not in path:'{}'.".format(VOC_root))

    # VOCdevkit -> VOC2012 -> ImageSets -> Main -> train.txt
    train_dataset = VOCDataSet(VOC_root,
                               "2012",
                               data_transform['train'],
                               train_set='train.txt')
    # 注意训练时,batch_size必须大于1
    batch_size = parser_data.batch_size
    assert batch_size > 1, "batch size must be greater than 1"
    # 防止最后一个batch_size=1,如果最后一个batch_size=1就舍去
    drop_last = True if len(train_dataset) % batch_size == 1 else False
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0,
              8])  # number of workers
    print('Using %g dataloader workers' % nw)
    train_data_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=nw,
        collate_fn=train_dataset.collate_fn,
        drop_last=drop_last)

    # VOCdevkit -> VOC2012 -> ImageSets -> Main -> val.txt
    val_dataset = VOCDataSet(VOC_root,
                             "2012",
                             data_transform['val'],
                             train_set='val.txt')
    val_data_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=nw,
        collate_fn=train_dataset.collate_fn)

    model = create_model(num_classes=args.num_classes + 1)
    model.to(device)

    # define optimizer
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params,
                                lr=0.0005,
                                momentum=0.9,
                                weight_decay=0.0005)
    # learning rate scheduler
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=5,
                                                   gamma=0.3)

    # 如果指定了上次训练保存的权重文件地址,则接着上次结果接着训练
    if parser_data.resume != "":
        checkpoint = torch.load(parser_data.resume, map_location='cpu')
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        parser_data.start_epoch = checkpoint['epoch'] + 1
        print("the training process from epoch{}...".format(
            parser_data.start_epoch))

    train_loss = []
    learning_rate = []
    val_map = []

    # 提前加载验证集数据,以免每次验证时都要重新加载一次数据,节省时间
    val_data = get_coco_api_from_dataset(val_data_loader.dataset)
    for epoch in range(parser_data.start_epoch, parser_data.epochs):
        mean_loss, lr = utils.train_one_epoch(model=model,
                                              optimizer=optimizer,
                                              data_loader=train_data_loader,
                                              device=device,
                                              epoch=epoch,
                                              print_freq=50)
        train_loss.append(mean_loss.item())
        learning_rate.append(lr)

        # update learning rate
        lr_scheduler.step()

        coco_info = utils.evaluate(model=model,
                                   data_loader=val_data_loader,
                                   device=device,
                                   data_set=val_data)

        # write into txt
        with open(results_file, "a") as f:
            # 写入的数据包括coco指标还有loss和learning rate
            result_info = [
                str(round(i, 4)) for i in coco_info + [mean_loss.item()]
            ] + [str(round(lr, 6))]
            txt = "epoch:{} {}".format(epoch, '  '.join(result_info))
            f.write(txt + "\n")

        val_map.append(coco_info[1])  # pascal mAP

        # save weights
        save_files = {
            'model': model.state_dict(),
            'optimizer': optimizer.state_dict(),
            'lr_scheduler': lr_scheduler.state_dict(),
            'epoch': epoch
        }
        torch.save(save_files, "./save_weights/ssd300-{}.pth".format(epoch))

    # plot loss and lr curve
    if len(train_loss) != 0 and len(learning_rate) != 0:
        from plot_curve import plot_loss_and_lr
        plot_loss_and_lr(train_loss, learning_rate)

    # plot mAP curve
    if len(val_map) != 0:
        from plot_curve import plot_map
        plot_map(val_map)
예제 #3
0
def main():
    # get devices
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)

    # create model
    # 目标检测数 + 背景
    num_classes = 20 + 1
    model = create_model(num_classes=num_classes)

    # load train weights
    train_weights = "./save_weights/ssd300-14.pth"
    train_weights_dict = torch.load(train_weights, map_location=device)['model']

    model.load_state_dict(train_weights_dict)
    model.to(device)

    # read class_indict
    json_path = "./pascal_voc_classes.json"
    assert os.path.exists(json_path), "file '{}' dose not exist.".format(json_path)
    json_file = open(json_path, 'r')
    class_dict = json.load(json_file)
    category_index = {v: k for k, v in class_dict.items()}

    # load image
    original_img = Image.open("./test.jpg")

    # from pil image to tensor, do not normalize image
    data_transform = transforms.Compose([transforms.Resize(),
                                         transforms.ToTensor(),
                                         transforms.Normalization()])
    img, _ = data_transform(original_img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    model.eval()
    with torch.no_grad():
        # initial model
        init_img = torch.zeros((1, 3, 300, 300), device=device)
        model(init_img)

        time_start = time_synchronized()
        predictions = model(img.to(device))[0]  # bboxes_out, labels_out, scores_out
        time_end = time_synchronized()
        print("inference+NMS time: {}".format(time_end - time_start))

        predict_boxes = predictions[0].to("cpu").numpy()
        predict_boxes[:, [0, 2]] = predict_boxes[:, [0, 2]] * original_img.size[0]
        predict_boxes[:, [1, 3]] = predict_boxes[:, [1, 3]] * original_img.size[1]
        predict_classes = predictions[1].to("cpu").numpy()
        predict_scores = predictions[2].to("cpu").numpy()

        if len(predict_boxes) == 0:
            print("没有检测到任何目标!")

        draw_box(original_img,
                 predict_boxes,
                 predict_classes,
                 predict_scores,
                 category_index,
                 thresh=0.5,
                 line_thickness=5)
        plt.imshow(original_img)
        plt.show()
def main(args):
    init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    results_file = "results{}.txt".format(
        datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

    # Data loading code
    print("Loading data")

    data_transform = {
        "train":
        transforms.Compose([
            transforms.SSDCropping(),
            transforms.Resize(),
            transforms.ColorJitter(),
            transforms.ToTensor(),
            transforms.RandomHorizontalFlip(),
            transforms.Normalization(),
            transforms.AssignGTtoDefaultBox()
        ]),
        "val":
        transforms.Compose([
            transforms.Resize(),
            transforms.ToTensor(),
            transforms.Normalization()
        ])
    }

    VOC_root = args.data_path
    # check voc root
    if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
        raise FileNotFoundError(
            "VOCdevkit dose not in path:'{}'.".format(VOC_root))

    # load train data set
    train_data_set = VOC2012DataSet(VOC_root,
                                    data_transform["train"],
                                    train_set='train.txt')

    # load validation data set
    val_data_set = VOC2012DataSet(VOC_root,
                                  data_transform["val"],
                                  train_set='val.txt')

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_data_set)
        test_sampler = torch.utils.data.distributed.DistributedSampler(
            val_data_set)
    else:
        train_sampler = torch.utils.data.RandomSampler(train_data_set)
        test_sampler = torch.utils.data.SequentialSampler(val_data_set)

    if args.aspect_ratio_group_factor >= 0:
        # 统计所有图像比例在bins区间中的位置索引
        group_ids = create_aspect_ratio_groups(
            train_data_set, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids,
                                                  args.batch_size)
    else:
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler,
                                                            args.batch_size,
                                                            drop_last=True)

    data_loader = torch.utils.data.DataLoader(
        train_data_set,
        batch_sampler=train_batch_sampler,
        num_workers=args.workers,
        collate_fn=train_data_set.collate_fn)

    data_loader_test = torch.utils.data.DataLoader(
        val_data_set,
        batch_size=1,
        sampler=test_sampler,
        num_workers=args.workers,
        collate_fn=train_data_set.collate_fn)

    print("Creating model")
    model = create_model(num_classes=args.num_classes + 1, device=device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params,
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=args.lr_step_size,
                                                   gamma=args.lr_gamma)
    # lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)

    # 如果传入resume参数,即上次训练的权重地址,则接着上次的参数训练
    if args.resume:
        # If map_location is missing, torch.load will first load the module to CPU
        # and then copy each parameter to where it was saved,
        # which would result in all processes on the same machine using the same set of devices.
        checkpoint = torch.load(
            args.resume, map_location='cpu')  # 读取之前保存的权重文件(包括优化器以及学习率策略)
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        args.start_epoch = checkpoint['epoch'] + 1

    if args.test_only:
        utils.evaluate(model, data_loader_test, device=device)
        return

    train_loss = []
    learning_rate = []
    val_map = []
    print("Start training")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        mean_loss, lr = utils.train_one_epoch(model,
                                              optimizer,
                                              data_loader,
                                              device,
                                              epoch,
                                              args.print_freq,
                                              warmup=True)
        # only first process to save training info
        if args.rank in [-1, 0]:
            train_loss.append(mean_loss.item())
            learning_rate.append(lr)

        # update learning rate
        lr_scheduler.step()

        # evaluate after every epoch
        coco_info = utils.evaluate(model, data_loader_test, device=device)

        if args.rank in [-1, 0]:
            # write into txt
            with open(results_file, "a") as f:
                # 写入的数据包括coco指标还有loss和learning rate
                result_info = [
                    str(round(i, 4))
                    for i in coco_info + [mean_loss.item(), lr]
                ]
                txt = "epoch:{} {}".format(epoch, '  '.join(result_info))
                f.write(txt + "\n")

            val_map.append(coco_info[1])  # pascal mAP

        if args.output_dir:
            # 只在主节点上执行保存权重操作
            save_on_master(
                {
                    'model': model_without_ddp.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'lr_scheduler': lr_scheduler.state_dict(),
                    'args': args,
                    'epoch': epoch
                }, os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))

    if args.rank in [-1, 0]:
        # plot loss and lr curve
        if len(train_loss) != 0 and len(learning_rate) != 0:
            from plot_curve import plot_loss_and_lr
            plot_loss_and_lr(train_loss, learning_rate)

        # plot mAP curve
        if len(val_map) != 0:
            from plot_curve import plot_map
            plot_map(val_map)