예제 #1
0
    def forward(self, x):
        """Executes this layer as part of a forward pass through the model.

    Args:
      x: Tensor of same shape and dtype as the input signature used to
          initialize this layer.

    Returns:
      Tensor of same shape and dtype as the input.
    """
        m1, m2, mb, w1, w2, b2 = self.weights
        if self._mode != 'predict':
            w1 = jnp.reshape(w1.T, (-1, self._d_ff))
            w2 = jnp.reshape(w2, (self._d_ff, -1))
        x_shape = x.shape
        x = jnp.reshape(x,
                        [-1, x_shape[-1]])  # Easier to operate on flattened x.

        # Q: should we add bias and/or put relu after the low-rank m1 dot?
        mask_logits = jnp.dot(jnp.dot(x, m1), m2) + mb
        mask_logits = jnp.reshape(mask_logits, [-1, self._d1, self._d2])
        # Softmax.
        mask_logsumexp = fastmath.logsumexp(mask_logits,
                                            axis=-1,
                                            keepdims=True)
        log_mask = mask_logits - mask_logsumexp
        mask = jnp.exp(log_mask)
        # Gumbel-softmax with straight-through discretization.
        rng1, rng2 = fastmath.random.split(self.rng, 2)
        u = fastmath.random.uniform(rng1, mask.shape, jnp.float32, 1e-6,
                                    1.0 - 1e-6)
        g = -jnp.log(-jnp.log(u))
        quant_mask = jnp.argmax(log_mask + g * self._temperature, axis=-1)
        if self._mode == 'train':
            # Tricks from Section 2.1 in https://arxiv.org/abs/1801.09797
            quant_mask = metrics.one_hot(quant_mask, self._n_elements_in_block)
            quant_mask = fastmath.stop_gradient(quant_mask)
            quant_mask += mask - fastmath.stop_gradient(
                mask)  # straight-through
            # We will sometimes (quant_prob of the batches) use the soft-mask instead
            # of the quantized mask to improve training stability (see paper above).
            select = fastmath.random.uniform(rng2, (), jnp.float32, 0.0, 1.0)
            quant_mask = jnp.where(select < self._quant_prob, quant_mask, mask)
            quant_mask = jnp.reshape(quant_mask, [-1, self._d_ff])

        if self._mode == 'train':
            # In training, run full matmul to get benefits from the above tricks.
            mid = jnp.dot(x, w1) * quant_mask  # [joint_batch, d_ff]
            relu = jnp.where(mid <= 0, jnp.zeros_like(mid), mid)
            res = jnp.dot(relu, w2) + b2
        elif self._mode == 'predict':
            # w1 = jnp.reshape(w1.T, (self._d1, self._d2, -1))
            # w2 = jnp.reshape(w2, (self._d1, self._d2, -1))
            # This implementation mimicks inference. It's not efficient for large
            # size of joint_batch, but at inference that will be 1 most of the time.
            # Shapes:
            # quant_mask is [joint_batch, self._d1]
            # w1 is [d_model, self._d1, self._d2]
            # we'll index w1 with advanced numpy indexing, first range over
            # self._d1 times the batch size, second range being quant_mask
            batch_size = quant_mask.shape[0]
            idx1 = jnp.array([jnp.arange(self._d1)] * batch_size)
            # flatten indices and select from w1
            idx1 = jnp.reshape(idx1, [-1])
            idx2 = jnp.reshape(quant_mask, [-1])
            w = w1[idx1,
                   idx2, :]  # now we have per-element weights with batch dim
            w = jnp.reshape(w, [batch_size, self._d1, -1])
            mid = jnp.einsum('ai,aji->aj', x, w)
            relu = jnp.where(mid <= 0, jnp.zeros_like(mid), mid)
            # w2 is [self._d1, self._d2, d_model]
            v = w2[idx1, idx2, :]
            v = jnp.reshape(v, [batch_size, self._d1, -1])
            res = jnp.einsum('ai,aij->aj', relu, v) + b2
        else:
            quant_mask = metrics.one_hot(quant_mask, self._n_elements_in_block)
            quant_mask = jnp.reshape(quant_mask, [-1, self._d_ff])
            mid = jnp.dot(x, w1) * quant_mask  # [joint_batch, d_ff]
            relu = jnp.where(mid <= 0, jnp.zeros_like(mid), mid)
            res = jnp.dot(relu, w2) + b2

        return jnp.reshape(res, x_shape)  # un-flatten if needed
예제 #2
0
    def forward(self, x):
        """Executes this layer as part of a forward pass through the model.

    Args:
      x: Tensor of same shape and dtype as the input signature used to
        initialize this layer.

    Returns:
      Tensor of same shape and dtype as the input.
    """
        m1, w1, w2, b2 = self.weights
        x_shape = x.shape
        x = jnp.reshape(x,
                        [-1, x_shape[-1]])  # Easier to operate on flattened x.

        # Q: check if we need bias and/or put relu after the m1 dot?
        mask_logits = jnp.dot(x, m1)
        # Softmax.
        mask_logsumexp = fastmath.logsumexp(mask_logits,
                                            axis=-1,
                                            keepdims=True)
        log_mask = mask_logits - mask_logsumexp
        mask = jnp.exp(log_mask)
        # Gumbel-softmax with straight-through discretization.
        # TODO(lukaszkaiser, chowdhery): Extract this block and share
        rng1, rng2 = fastmath.random.split(self.rng, 2)
        u = fastmath.random.uniform(rng1, mask.shape, jnp.float32, 1e-6,
                                    1.0 - 1e-6)
        g = -jnp.log(-jnp.log(u))
        selected_experts = jnp.argmax(log_mask + g * self._temperature,
                                      axis=-1)
        if self._mode == 'train':
            # Tricks from Section 2.1 in https://arxiv.org/abs/1801.09797
            quant_mask = metrics.one_hot(selected_experts, self._num_experts)
            quant_mask = fastmath.stop_gradient(quant_mask)
            quant_mask += mask - fastmath.stop_gradient(
                mask)  # straight-through
            # We will sometimes (50% of the batches) use the soft-mask instead of
            # the quantized mask to improve training stability (see the paper above).
            # Q: is selecting 50% of batches the best? Other %? Mixed in-batch?
            select = fastmath.random.uniform(rng2, (), jnp.float32, -1.0, 1.0)
            quant_mask = jnp.where(select > 0.0, quant_mask, mask)
        else:
            quant_mask = metrics.one_hot(selected_experts, self._num_experts)
        quant_mask = jnp.reshape(quant_mask, [-1, self._num_experts, 1])
        quant_mask_shape = quant_mask.shape
        batch_size = quant_mask.shape[0]

        if self._mode == 'predict' and batch_size == 1:
            # This implementation mimicks inference for batch_size 1.
            start_idx = selected_experts[0] * self._n_elements_in_block
            # w1 is [d_model, d_ff], w is [d_model, n_elements_in_block]
            w = fastmath.dynamic_slice(
                w1, [0, start_idx], [w1.shape[0], self._n_elements_in_block])
            mid = jnp.dot(x, w)
            relu = jnp.where(mid <= 0, jnp.zeros_like(mid), mid)
            # w2 is [d_ff, d_model], v is [n_elements_in_block, d_model]
            v = fastmath.dynamic_slice(
                w2, [start_idx, 0], [self._n_elements_in_block, w2.shape[-1]])
            v = jnp.reshape(v, [self._n_elements_in_block, -1])
            res = jnp.dot(relu, v) + b2
        else:
            expanded_mask = jnp.broadcast_to(
                quant_mask, (quant_mask_shape[0], quant_mask.shape[1],
                             self._n_elements_in_block))
            expanded_mask = jnp.reshape(expanded_mask, (-1, self._d_ff))
            mid = jnp.dot(x, w1) * expanded_mask  # [joint_batch, d_ff]
            relu = jnp.where(mid <= 0, jnp.zeros_like(mid), mid)
            res = jnp.dot(relu, w2) + b2

        return jnp.reshape(res, x_shape)  # un-flatten if needed