예제 #1
0
def ix_(*args):  # pylint: disable=missing-docstring
  n = len(args)
  output = []
  for i, a in enumerate(args):
    a = asarray(a).data
    a_rank = tf.rank(a)
    a_rank_temp = utils.get_static_value(a_rank)
    if a_rank_temp is not None:
      a_rank = a_rank_temp
      if a_rank != 1:
        raise ValueError(
            'Arguments must be 1-d, got arg {} of rank {}'.format(i, a_rank))
    else:
      tf.debugging.Assert(a_rank == 1, [a_rank])

    new_shape = [1] * n
    new_shape[i] = -1
    dtype = a.dtype
    if dtype == tf.bool:
      output.append(
          utils.tensor_to_ndarray(tf.reshape(nonzero(a)[0].data, new_shape)))
    elif dtype.is_integer:
      output.append(utils.tensor_to_ndarray(tf.reshape(a, new_shape)))
    else:
      raise ValueError(
          'Only integer and bool dtypes are supported, got {}'.format(dtype))

  return output
예제 #2
0
def diagonal(a, offset=0, axis1=0, axis2=1):  # pylint: disable=missing-docstring
  a = asarray(a).data

  maybe_rank = a.shape.rank
  if maybe_rank is not None and offset == 0 and (
      axis1 == maybe_rank - 2 or axis1 == -2) and (axis2 == maybe_rank - 1 or
                                                   axis2 == -1):
    return utils.tensor_to_ndarray(tf.linalg.diag_part(a))

  a = moveaxis(utils.tensor_to_ndarray(a), (axis1, axis2), (-2, -1)).data

  a_shape = tf.shape(a)

  def _zeros():  # pylint: disable=missing-docstring
    return (tf.zeros(tf.concat([a_shape[:-1], [0]], 0), dtype=a.dtype), 0)

  # All zeros since diag_part doesn't handle all possible k (aka offset).
  # Written this way since cond will run shape inference on both branches,
  # and diag_part shape inference will fail when offset is out of bounds.
  a, offset = utils.cond(
      utils.logical_or(
          utils.less_equal(offset, -1 * utils.getitem(a_shape, -2)),
          utils.greater_equal(offset, utils.getitem(a_shape, -1)),
      ), _zeros, lambda: (a, offset))

  a = utils.tensor_to_ndarray(tf.linalg.diag_part(a, k=offset))
  return a
예제 #3
0
def flip(m, axis=None):  # pylint: disable=missing-docstring
  m = asarray(m).data

  if axis is None:
    return utils.tensor_to_ndarray(tf.reverse(m, tf.range(tf.rank(m))))

  axis = utils._canonicalize_axis(axis, tf.rank(m))  # pylint: disable=protected-access

  return utils.tensor_to_ndarray(tf.reverse(m, [axis]))
예제 #4
0
def _reduce(tf_fn, a, axis=None, dtype=None, keepdims=None,
            promote_int=_TO_INT64, tf_bool_fn=None, preserve_bool=False):
  """A general reduction function.

  Args:
    tf_fn: the TF reduction function.
    a: the array to be reduced.
    axis: (optional) the axis along which to do the reduction. If None, all
      dimensions are reduced.
    dtype: (optional) the dtype of the result.
    keepdims: (optional) whether to keep the reduced dimension(s).
    promote_int: how to promote integer and bool inputs. There are three
      choices: (1) _TO_INT64: always promote them to int64 or uint64; (2)
      _TO_FLOAT: always promote them to a float type (determined by
      dtypes.default_float_type); (3) None: don't promote.
    tf_bool_fn: (optional) the TF reduction function for bool inputs. It
      will only be used if `dtype` is explicitly set to `np.bool_` or if `a`'s
      dtype is `np.bool_` and `preserve_bool` is True.
    preserve_bool: a flag to control whether to use `tf_bool_fn` if `a`'s dtype
      is `np.bool_` (some reductions such as np.sum convert bools to
      integers, while others such as np.max preserve bools.

  Returns:
    An ndarray.
  """
  if dtype:
    dtype = utils.result_type(dtype)
  if keepdims is None:
    keepdims = False
  a = asarray(a, dtype=dtype)
  if ((dtype == np.bool_ or preserve_bool and a.dtype == np.bool_)
      and tf_bool_fn is not None):
    return utils.tensor_to_ndarray(
        tf_bool_fn(input_tensor=a.data, axis=axis, keepdims=keepdims))
  if dtype is None:
    dtype = a.dtype
    if np.issubdtype(dtype, np.integer) or dtype == np.bool_:
      if promote_int == _TO_INT64:
        # If a is an integer/bool type and whose bit width is less than 64,
        # numpy up-casts it to 64-bit.
        if dtype == np.bool_:
          is_signed = True
          width = 8  # We can use any number here that is less than 64
        else:
          is_signed = np.issubdtype(dtype, np.signedinteger)
          width = np.iinfo(dtype).bits
        if width < 64:
          if is_signed:
            dtype = np.int64
          else:
            dtype = np.uint64
          a = a.astype(dtype)
      elif promote_int == _TO_FLOAT:
        a = a.astype(dtypes.default_float_type())

  return utils.tensor_to_ndarray(
      tf_fn(input_tensor=a.data, axis=axis, keepdims=keepdims))
예제 #5
0
def roll(a, shift, axis=None):  # pylint: disable=missing-docstring
  a = asarray(a).data

  if axis is not None:
    return utils.tensor_to_ndarray(tf.roll(a, shift, axis))

  # If axis is None, the roll happens as a 1-d tensor.
  original_shape = tf.shape(a)
  a = tf.roll(tf.reshape(a, [-1]), shift, 0)
  return utils.tensor_to_ndarray(tf.reshape(a, original_shape))
예제 #6
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def sort(a, axis=-1, kind='quicksort', order=None):  # pylint: disable=missing-docstring
    if kind != 'quicksort':
        raise ValueError("Only 'quicksort' is supported.")
    if order is not None:
        raise ValueError("'order' argument to sort is not supported.")

    a = array_ops.array(a)

    if axis is None:
        result_t = tf.sort(tf.reshape(a.data, [-1]), 0)
        return utils.tensor_to_ndarray(result_t)
    else:
        return utils.tensor_to_ndarray(tf.sort(a.data, axis))
예제 #7
0
def repeat(a, repeats, axis=None):  # pylint: disable=missing-docstring
  a = asarray(a).data
  original_shape = a._shape_as_list()  # pylint: disable=protected-access
  # Best effort recovery of the shape.
  if original_shape is not None and None not in original_shape:
    if not original_shape:
      original_shape = (repeats,)
    else:
      repeats_np = np.ravel(np.array(repeats))
      if repeats_np.size == 1:
        repeats_np = repeats_np.item()
        if axis is None:
          original_shape = (repeats_np * np.prod(original_shape),)
        else:
          original_shape[axis] = repeats_np * original_shape[axis]
      else:
        if axis is None:
          original_shape = (repeats_np.sum(),)
        else:
          original_shape[axis] = repeats_np.sum()

  repeats = asarray(repeats).data
  result = tf.repeat(a, repeats, axis)
  result.set_shape(original_shape)

  return utils.tensor_to_ndarray(result)
예제 #8
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def _bin_op(tf_fun, a, b, promote=True):
    if promote:
        a, b = array_ops._promote_dtype(a, b)  # pylint: disable=protected-access
    else:
        a = array_ops.array(a)
        b = array_ops.array(b)
    return utils.tensor_to_ndarray(tf_fun(a.data, b.data))
예제 #9
0
def diag(v, k=0):  # pylint: disable=missing-docstring
  """Raises an error if input is not 1- or 2-d."""
  v = asarray(v).data
  v_rank = tf.rank(v)

  v.shape.with_rank_at_most(2)

  # TODO(nareshmodi): Consider a utils.Assert version that will fail during
  # tracing time if the shape is known.
  tf.debugging.Assert(
      utils.logical_or(tf.equal(v_rank, 1), tf.equal(v_rank, 2)), [v_rank])

  def _diag(v, k):
    return utils.cond(
        tf.equal(tf.size(v), 0),
        lambda: tf.zeros([abs(k), abs(k)], dtype=v.dtype),
        lambda: tf.linalg.diag(v, k=k))

  def _diag_part(v, k):
    v_shape = tf.shape(v)
    v, k = utils.cond(
        utils.logical_or(
            utils.less_equal(k, -1 * utils.getitem(v_shape, 0)),
            utils.greater_equal(k, utils.getitem(v_shape, 1)),
        ), lambda: (tf.zeros([0, 0], dtype=v.dtype), 0), lambda: (v, k))
    result = tf.linalg.diag_part(v, k=k)
    return result

  result = utils.cond(
      tf.equal(v_rank, 1), lambda: _diag(v, k), lambda: _diag_part(v, k))
  return utils.tensor_to_ndarray(result)
예제 #10
0
def vander(x, N=None, increasing=False):  # pylint: disable=missing-docstring,invalid-name
  x = asarray(x).data

  x_shape = tf.shape(x)
  N = N or x_shape[0]

  N_temp = utils.get_static_value(N)  # pylint: disable=invalid-name
  if N_temp is not None:
    N = N_temp
    if N < 0:
      raise ValueError('N must be nonnegative')
  else:
    tf.debugging.Assert(N >= 0, [N])

  rank = tf.rank(x)
  rank_temp = utils.get_static_value(rank)
  if rank_temp is not None:
    rank = rank_temp
    if rank != 1:
      raise ValueError('x must be a one-dimensional array')
  else:
    tf.debugging.Assert(rank == 1, [rank])

  if increasing:
    start = 0
    limit = N
    delta = 1
  else:
    start = N - 1
    limit = -1
    delta = -1

  x = tf.expand_dims(x, -1)
  return utils.tensor_to_ndarray(
      tf.math.pow(x, tf.cast(tf.range(start, limit, delta), dtype=x.dtype)))
예제 #11
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def _argminmax(fn, a, axis=None):
    a = array_ops.array(a)
    if axis is None:
        # When axis is None numpy flattens the array.
        a_t = tf.reshape(a.data, [-1])
    else:
        a_t = array_ops.atleast_1d(a).data
    return utils.tensor_to_ndarray(fn(input=a_t, axis=axis))
예제 #12
0
def where(condition, x=None, y=None):
  """Raises ValueError if exactly one of x or y is not None."""
  condition = asarray(condition, dtype=np.bool_)
  if x is None and y is None:
    return nonzero(condition)
  elif x is not None and y is not None:
    x, y = _promote_dtype(x, y)
    return utils.tensor_to_ndarray(tf.where(condition.data, x.data, y.data))
  raise ValueError('Both x and y must be ndarrays, or both must be None.')
예제 #13
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def _comparison(tf_fun, x1, x2, cast_bool_to_int=False):
    dtype = utils.result_type(x1, x2)
    # Cast x1 and x2 to the result_type if needed.
    x1 = array_ops.array(x1, dtype=dtype)
    x2 = array_ops.array(x2, dtype=dtype)
    x1 = x1.data
    x2 = x2.data
    if cast_bool_to_int and x1.dtype == tf.bool:
        x1 = tf.cast(x1, tf.int32)
        x2 = tf.cast(x2, tf.int32)
    return utils.tensor_to_ndarray(tf_fun(x1, x2))
예제 #14
0
def moveaxis(a, source, destination):  # pylint: disable=missing-docstring
  """Raises ValueError if source, destination not in (-ndim(a), ndim(a))."""
  if not source and not destination:
    return a

  a = asarray(a).data

  if isinstance(source, int):
    source = (source,)
  if isinstance(destination, int):
    destination = (destination,)

  a_rank = utils._maybe_static(tf.rank(a))  # pylint: disable=protected-access

  def _correct_axis(axis, rank):
    if axis < 0:
      return axis + rank
    return axis

  source = tuple(_correct_axis(axis, a_rank) for axis in source)
  destination = tuple(_correct_axis(axis, a_rank) for axis in destination)

  if a.shape.rank is not None:
    perm = [i for i in range(a_rank) if i not in source]
    for dest, src in sorted(zip(destination, source)):
      assert dest <= len(perm)
      perm.insert(dest, src)
  else:
    r = tf.range(a_rank)

    def _remove_indices(a, b):
      """Remove indices (`b`) from `a`."""
      items = tf.unstack(tf.sort(tf.stack(b)), num=len(b))

      i = 0
      result = []

      for item in items:
        result.append(a[i:item])
        i = item + 1

      result.append(a[i:])

      return tf.concat(result, 0)

    minus_sources = _remove_indices(r, source)
    minus_dest = _remove_indices(r, destination)

    perm = tf.scatter_nd(tf.expand_dims(minus_dest, 1), minus_sources, [a_rank])
    perm = tf.tensor_scatter_nd_update(perm, tf.expand_dims(destination, 1),
                                       source)
  a = tf.transpose(a, perm)

  return utils.tensor_to_ndarray(a)
예제 #15
0
def expand_dims(a, axis):
  """Expand the shape of an array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    axis: int. axis on which to expand the shape.

  Returns:
    An ndarray with the contents and dtype of `a` and shape expanded on axis.
  """
  a = asarray(a)
  return utils.tensor_to_ndarray(tf.expand_dims(a.data, axis=axis))
예제 #16
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def clip(a, a_min, a_max):  # pylint: disable=missing-docstring
    if a_min is None and a_max is None:
        raise ValueError(
            'Not more than one of `a_min` and `a_max` may be `None`.')
    if a_min is None:
        return minimum(a, a_max)
    elif a_max is None:
        return maximum(a, a_min)
    else:
        a, a_min, a_max = array_ops._promote_dtype(a, a_min, a_max)  # pylint: disable=protected-access
        return utils.tensor_to_ndarray(
            tf.clip_by_value(
                *utils.tf_broadcast(a.data, a_min.data, a_max.data)))
예제 #17
0
def cumsum(a, axis=None, dtype=None):  # pylint: disable=missing-docstring
  a = asarray(a, dtype=dtype)

  if dtype is None:
    a = _maybe_promote_to_int(a)

  # If axis is None, the input is flattened.
  if axis is None:
    a = ravel(a)
    axis = 0
  elif axis < 0:
    axis += tf.rank(a.data)
  return utils.tensor_to_ndarray(tf.cumsum(a.data, axis))
예제 #18
0
def swapaxes(a, axis1, axis2):  # pylint: disable=missing-docstring
  a = asarray(a)

  a_rank = tf.rank(a)
  if axis1 < 0:
    axis1 += a_rank
  if axis2 < 0:
    axis2 += a_rank

  perm = tf.range(a_rank)
  perm = tf.tensor_scatter_nd_update(perm, [[axis1], [axis2]], [axis2, axis1])
  a = tf.transpose(a, perm)

  return utils.tensor_to_ndarray(a)
예제 #19
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def trace(a, offset=0, axis1=0, axis2=1, dtype=None):  # pylint: disable=missing-docstring
    if dtype:
        dtype = utils.result_type(dtype)
    a = array_ops.asarray(a, dtype).data

    if offset == 0:
        a_shape = a.shape
        if a_shape.rank is not None:
            rank = len(a_shape)
            if (axis1 == -2 or axis1 == rank - 2) and (axis2 == -1
                                                       or axis2 == rank - 1):
                return utils.tensor_to_ndarray(tf.linalg.trace(a))

    a = array_ops.diagonal(a, offset, axis1, axis2)
    return array_ops.sum(a, -1, dtype)
예제 #20
0
def imag(a):
  """Returns imaginary parts of all elements in `a`.

  Uses `tf.imag`.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.

  Returns:
    An ndarray with the same shape as `a`.
  """
  a = asarray(a)
  # TODO(srbs): np.imag returns a scalar if a is a scalar, whereas we always
  # return an ndarray.
  return utils.tensor_to_ndarray(tf.math.imag(a.data))
예제 #21
0
def squeeze(a, axis=None):
  """Removes single-element axes from the array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    axis: scalar or list/tuple of ints.

  TODO(srbs): tf.squeeze throws error when axis is a Tensor eager execution
  is enabled. So we cannot allow axis to be array_like here. Fix.

  Returns:
    An ndarray.
  """
  a = asarray(a)
  return utils.tensor_to_ndarray(tf.squeeze(a, axis))
예제 #22
0
def triu(m, k=0):  # pylint: disable=missing-docstring
  m = asarray(m).data
  m_shape = m.shape.as_list()

  if len(m_shape) < 2:
    raise ValueError('Argument to triu must have rank at least 2')

  if m_shape[-1] is None or m_shape[-2] is None:
    raise ValueError('Currently, the last two dimensions of the input array '
                     'need to be known.')

  z = tf.constant(0, m.dtype)

  mask = tri(*m_shape[-2:], k=k - 1, dtype=bool)
  return utils.tensor_to_ndarray(
      tf.where(tf.broadcast_to(mask, tf.shape(m)), z, m))
예제 #23
0
def real(val):
  """Returns real parts of all elements in `a`.

  Uses `tf.real`.

  Args:
    val: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.

  Returns:
    An ndarray with the same shape as `a`.
  """
  val = asarray(val)
  # TODO(srbs): np.real returns a scalar if val is a scalar, whereas we always
  # return an ndarray.
  return utils.tensor_to_ndarray(tf.math.real(val.data))
예제 #24
0
def around(a, decimals=0):  # pylint: disable=missing-docstring
  a = asarray(a)
  dtype = a.dtype
  factor = math.pow(10, decimals)
  if np.issubdtype(dtype, np.inexact):
    factor = tf.cast(factor, dtype)
  else:
    # Use float as the working dtype when a.dtype is exact (e.g. integer),
    # because `decimals` can be negative.
    float_dtype = dtypes.default_float_type()
    a = a.astype(float_dtype).data
    factor = tf.cast(factor, float_dtype)
  a = tf.multiply(a, factor)
  a = tf.round(a)
  a = tf.math.divide(a, factor)
  return utils.tensor_to_ndarray(a).astype(dtype)
예제 #25
0
파일: random.py 프로젝트: zhaoqiuye/trax
def randn(*args):
    """Returns samples from a normal distribution.

  Uses `tf.random_normal`.

  Args:
    *args: The shape of the output array.

  Returns:
    An ndarray with shape `args` and dtype `float64`.
  """
    # TODO(wangpeng): Use new stateful RNG
    if utils.isscalar(args):
        args = (args, )
    return utils.tensor_to_ndarray(
        tf.random.normal(args, dtype=DEFAULT_RANDN_DTYPE))
예제 #26
0
def compress(condition, a, axis=None):
  """Compresses `a` by selecting values along `axis` with `condition` true.

  Uses `tf.boolean_mask`.

  Args:
    condition: 1-d array of bools. If `condition` is shorter than the array
      axis (or the flattened array if axis is None), it is padded with False.
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    axis: Optional. Axis along which to select elements. If None, `condition` is
      applied on flattened array.

  Returns:
    An ndarray.

  Raises:
    ValueError: if `condition` is not of rank 1.
  """
  condition = asarray(condition, dtype=bool)
  a = asarray(a)

  if condition.ndim != 1:
    raise ValueError('condition must be a 1-d array.')
  # `np.compress` treats scalars as 1-d arrays.
  if a.ndim == 0:
    a = ravel(a)

  if axis is None:
    a = ravel(a)
    axis = 0

  if axis < 0:
    axis += a.ndim

  assert axis >= 0 and axis < a.ndim

  # `tf.boolean_mask` requires the first dimensions of array and condition to
  # match. `np.compress` pads condition with False when it is shorter.
  condition_t = condition.data
  a_t = a.data
  if condition.shape[0] < a.shape[axis]:
    padding = tf.fill([a.shape[axis] - condition.shape[0]], False)
    condition_t = tf.concat([condition_t, padding], axis=0)
  return utils.tensor_to_ndarray(tf.boolean_mask(tensor=a_t, mask=condition_t,
                                                 axis=axis))
예제 #27
0
def reshape(a, newshape, order='C'):
  """order argument can only b 'C' or 'F'."""
  if order not in {'C', 'F'}:
    raise ValueError('Unsupported order argument {}'.format(order))

  a = asarray(a)
  if isinstance(newshape, arrays_lib.ndarray):
    newshape = newshape.data
  if isinstance(newshape, int):
    newshape = [newshape]

  if order == 'F':
    r = tf.transpose(tf.reshape(tf.transpose(a.data), newshape[::-1]))
  else:
    r = tf.reshape(a.data, newshape)

  return utils.tensor_to_ndarray(r)
예제 #28
0
def transpose(a, axes=None):
  """Permutes dimensions of the array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    axes: array_like. A list of ints with length rank(a) or None specifying the
      order of permutation. The i'th dimension of the output array corresponds
      to axes[i]'th dimension of the `a`. If None, the axes are reversed.

  Returns:
    An ndarray.
  """
  a = asarray(a)
  if axes is not None:
    axes = asarray(axes)
  return utils.tensor_to_ndarray(tf.transpose(a=a.data, perm=axes))
예제 #29
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def _scalar(tf_fn, x, promote_to_float=False):
    """Computes the tf_fn(x) for each element in `x`.

  Args:
    tf_fn: function that takes a single Tensor argument.
    x: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    promote_to_float: whether to cast the argument to a float dtype
      (`dtypes.default_float_type`) if it is not already.

  Returns:
    An ndarray with the same shape as `x`. The default output dtype is
    determined by `dtypes.default_float_type`, unless x is an ndarray with a
    floating point type, in which case the output type is same as x.dtype.
  """
    x = array_ops.asarray(x)
    if promote_to_float and not np.issubdtype(x.dtype, np.inexact):
        x = x.astype(dtypes.default_float_type())
    return utils.tensor_to_ndarray(tf_fn(x.data))
예제 #30
0
파일: math_ops.py 프로젝트: zhaoqiuye/trax
def meshgrid(*xi, **kwargs):
    """This currently requires copy=True and sparse=False."""
    sparse = kwargs.get('sparse', False)
    if sparse:
        raise ValueError('tf.numpy doesnt support returning sparse arrays yet')

    copy = kwargs.get('copy', True)
    if not copy:
        raise ValueError('tf.numpy only supports copy=True')

    indexing = kwargs.get('indexing', 'xy')

    xi = [array_ops.asarray(arg).data for arg in xi]
    kwargs = {'indexing': indexing}

    outputs = tf.meshgrid(*xi, **kwargs)
    outputs = [utils.tensor_to_ndarray(output) for output in outputs]

    return outputs