예제 #1
0
    def store_performance_artifact(
            self, job_ids, performance_artifact_placeholders):
        """
        Store the performance data
        """

        # Retrieve list of job signatures associated with the jobs
        job_data = self.get_job_signatures_from_ids(job_ids)

        job_ref_data_signatures = set()
        map(
            lambda job_guid: job_ref_data_signatures.add(
                job_data[job_guid]['signature']
            ),
            job_data.keys()
        )

        # Retrieve associated data in reference_data_signatures
        reference_data = self.refdata_model.get_reference_data(
            list(job_ref_data_signatures))

        tda = TalosDataAdapter()

        for perf_data in performance_artifact_placeholders:
            job_guid = perf_data["job_guid"]
            ref_data_signature = job_data[job_guid]['signature']
            ref_data = reference_data[ref_data_signature]

            if 'signature' in ref_data:
                del ref_data['signature']

            # adapt and load data into placeholder structures
            tda.adapt_and_load(self.project, ref_data, job_data, perf_data)
예제 #2
0
    def store_performance_artifact(
            self, job_ids, performance_artifact_placeholders):
        """
        Store the performance data
        """

        # Retrieve list of job signatures associated with the jobs
        job_data = self.get_job_signatures_from_ids(job_ids)

        job_ref_data_signatures = set()
        map(
            lambda job_guid: job_ref_data_signatures.add(
                job_data[job_guid]['signature']
            ),
            job_data.keys()
        )

        # Retrieve associated data in reference_data_signatures
        reference_data = self.refdata_model.get_reference_data(
            list(job_ref_data_signatures))

        tda = TalosDataAdapter()

        for perf_data in performance_artifact_placeholders:
            job_guid = perf_data["job_guid"]
            ref_data_signature = job_data[job_guid]['signature']
            ref_data = reference_data[ref_data_signature]

            if 'signature' in ref_data:
                del ref_data['signature']

            # adapt and load data into placeholder structures
            tda.adapt_and_load(ref_data, job_data, perf_data)

        self.jobs_execute(
            proc="jobs.inserts.set_performance_artifact",
            debug_show=self.DEBUG,
            placeholders=tda.performance_artifact_placeholders,
            executemany=True)

        self.jobs_execute(
            proc='jobs.inserts.set_series_signature',
            debug_show=self.DEBUG,
            placeholders=tda.signature_property_placeholders,
            executemany=True)

        tda.submit_tasks(self.project)
def test_adapt_and_load():

    talos_perf_data = SampleData.get_talos_perf_data()

    tda = TalosDataAdapter()

    result_count = 0
    for datum in talos_perf_data:

        datum = {
            "job_guid": 'oqiwy0q847365qiu',
            "name": "test",
            "type": "test",
            "blob": datum
        }

        job_data = {
            "oqiwy0q847365qiu": {
                "id": 1,
                "result_set_id": 1,
                "push_timestamp": 1402692388
            }
        }

        reference_data = {
            "property1": "value1",
            "property2": "value2",
            "property3": "value3"
        }

        # one extra result for the summary series
        result_count += len(datum['blob']["results"]) + 1

        # we create one performance series per counter
        if 'talos_counters' in datum['blob']:
            result_count += len(datum['blob']["talos_counters"])

        # Mimic production environment, the blobs are serialized
        # when the web service receives them
        datum['blob'] = json.dumps({'talos_data': [datum['blob']]})
        tda.adapt_and_load(reference_data, job_data, datum)

    assert result_count == len(tda.performance_artifact_placeholders)
예제 #4
0
    def test_adapt_and_load(self):

        talos_perf_data = SampleData.get_talos_perf_data()

        for talos_datum in talos_perf_data:

            datum = {
                "job_guid": 'oqiwy0q847365qiu',
                "name": "test",
                "type": "test",
                "blob": talos_datum
            }

            job_data = {
                "oqiwy0q847365qiu": {
                    "id": 1,
                    "result_set_id": 1,
                    "push_timestamp": 1402692388
                }
            }

            reference_data = {
                "property1": "value1",
                "property2": "value2",
                "property3": "value3"
            }

            # Mimic production environment, the blobs are serialized
            # when the web service receives them
            datum['blob'] = json.dumps({'talos_data': [datum['blob']]})
            tda = TalosDataAdapter()
            tda.adapt_and_load(reference_data, job_data, datum)

            # base: subtests + one extra result for the summary series
            expected_result_count = len(talos_datum["results"]) + 1

            # we create one performance series per counter
            if 'talos_counters' in talos_datum:
                expected_result_count += len(talos_datum["talos_counters"])

            # result count == number of signatures
            self.assertEqual(expected_result_count, len(tda.signatures.keys()))

            # verify that we have signatures for the subtests
            signature_placeholders = copy.copy(
                tda.signature_property_placeholders)
            for (testname, results) in talos_datum["results"].iteritems():
                signature_placeholder = filter(
                    lambda p: p[2] == testname, signature_placeholders)
                self.assertEqual(len(signature_placeholder), 1)
                signature_hash = signature_placeholder[0][0]
                perfdata = tda.signatures[signature_hash][0]
                if talos_datum.get('summary'):
                    # if we have a summary, ensure the subtest summary values made
                    # it in
                    for measure in ['min', 'max', 'std', 'mean', 'median']:
                        self.assertEqual(
                            round(talos_datum['summary']['subtests'][testname][measure], 2),
                            perfdata[measure])
                else:
                    # this is an old style talos blob without a summary. these are going
                    # away, so I'm not going to bother testing the correctness. however
                    # let's at least verify that some values are being generated here
                    for measure in ['min', 'max', 'std', 'mean', 'median']:
                        self.assertTrue(perfdata[measure])

                # filter out this signature from data to process
                signature_placeholders = filter(
                    lambda p: p[0] != signature_hash, signature_placeholders)

            # if we have counters, verify that the series for them is as expected
            for (counter, results) in talos_datum.get('talos_counters',
                                                      {}).iteritems():
                signature_placeholder = filter(
                    lambda p: p[2] == counter, signature_placeholders)
                self.assertEqual(len(signature_placeholder), 1)
                signature_hash = signature_placeholder[0][0]
                perfdata = tda.signatures[signature_hash][0]
                for measure in ['max', 'mean']:
                    self.assertEqual(round(float(results[measure]), 2),
                                     perfdata[measure])
                # filter out this signature from data to process
                signature_placeholders = filter(
                    lambda p: p[0] != signature_hash, signature_placeholders)

            # we should be left with just summary signature placeholders
            self.assertEqual(len(signature_placeholders), 2)
            perfdata = tda.signatures[signature_placeholders[0][0]][0]
            if talos_datum.get('summary'):
                self.assertEqual(round(talos_datum['summary']['suite'], 2),
                                 perfdata['geomean'])
            else:
                # old style talos blob without summary. again, going away,
                # but let's at least test that we have the 'geomean' value
                # generated
                self.assertTrue(perfdata['geomean'])
예제 #5
0
    def test_adapt_and_load(self):

        talos_perf_data = SampleData.get_talos_perf_data()

        for talos_datum in talos_perf_data:

            datum = {
                "job_guid": 'oqiwy0q847365qiu',
                "name": "test",
                "type": "test",
                "blob": talos_datum
            }

            job_data = {
                "oqiwy0q847365qiu": {
                    "id": 1,
                    "result_set_id": 1,
                    "push_timestamp": 1402692388
                }
            }

            reference_data = {
                "property1": "value1",
                "property2": "value2",
                "property3": "value3"
            }

            # Mimic production environment, the blobs are serialized
            # when the web service receives them
            datum['blob'] = json.dumps({'talos_data': [datum['blob']]})
            tda = TalosDataAdapter()
            tda.adapt_and_load(reference_data, job_data, datum)

            # base: subtests + one extra result for the summary series
            expected_result_count = len(talos_datum["results"]) + 1

            # we create one performance series per counter
            if 'talos_counters' in talos_datum:
                expected_result_count += len(talos_datum["talos_counters"])

            # result count == number of signatures
            self.assertEqual(expected_result_count, len(tda.signatures.keys()))

            # verify that we have signatures for the subtests
            signature_placeholders = copy.copy(
                tda.signature_property_placeholders)
            for (testname, results) in talos_datum["results"].iteritems():
                signature_placeholder = filter(lambda p: p[2] == testname,
                                               signature_placeholders)
                self.assertEqual(len(signature_placeholder), 1)
                signature_hash = signature_placeholder[0][0]
                perfdata = tda.signatures[signature_hash][0]
                if talos_datum.get('summary'):
                    # if we have a summary, ensure the subtest summary values made
                    # it in
                    for measure in ['min', 'max', 'std', 'mean', 'median']:
                        self.assertEqual(
                            round(
                                talos_datum['summary']['subtests'][testname]
                                [measure], 2), perfdata[measure])
                else:
                    # this is an old style talos blob without a summary. these are going
                    # away, so I'm not going to bother testing the correctness. however
                    # let's at least verify that some values are being generated here
                    for measure in ['min', 'max', 'std', 'mean', 'median']:
                        self.assertTrue(perfdata[measure])

                # filter out this signature from data to process
                signature_placeholders = filter(
                    lambda p: p[0] != signature_hash, signature_placeholders)

            # if we have counters, verify that the series for them is as expected
            for (counter, results) in talos_datum.get('talos_counters',
                                                      {}).iteritems():
                signature_placeholder = filter(lambda p: p[2] == counter,
                                               signature_placeholders)
                self.assertEqual(len(signature_placeholder), 1)
                signature_hash = signature_placeholder[0][0]
                perfdata = tda.signatures[signature_hash][0]
                for measure in ['max', 'mean']:
                    self.assertEqual(round(float(results[measure]), 2),
                                     perfdata[measure])
                # filter out this signature from data to process
                signature_placeholders = filter(
                    lambda p: p[0] != signature_hash, signature_placeholders)

            # we should be left with just summary signature placeholders
            self.assertEqual(len(signature_placeholders), 2)
            perfdata = tda.signatures[signature_placeholders[0][0]][0]
            if talos_datum.get('summary'):
                self.assertEqual(round(talos_datum['summary']['suite'], 2),
                                 perfdata['geomean'])
            else:
                # old style talos blob without summary. again, going away,
                # but let's at least test that we have the 'geomean' value
                # generated
                self.assertTrue(perfdata['geomean'])
def test_adapt_and_load():

    talos_perf_data = SampleData.get_talos_perf_data()

    tda = TalosDataAdapter()

    result_count = 0
    for datum in talos_perf_data:

        datum = {
            "job_guid": 'oqiwy0q847365qiu',
            "name": "test",
            "type": "test",
            "blob": datum
        }

        job_data = {
            "oqiwy0q847365qiu": {
                "id": 1,
                "result_set_id": 1,
                "push_timestamp": 1402692388
            }
        }

        reference_data = {
            "property1": "value1",
            "property2": "value2",
            "property3": "value3"
        }

        # one extra result for the summary series
        result_count += len(datum['blob']["results"]) + 1

        # we create one performance series per counter
        if 'talos_counters' in datum['blob']:
            result_count += len(datum['blob']["talos_counters"])

        # Mimic production environment, the blobs are serialized
        # when the web service receives them
        datum['blob'] = json.dumps({'talos_data': [datum['blob']]})
        tda.adapt_and_load(reference_data, job_data, datum)

        # we upload a summary with a suite and subtest values, +1 for suite
        if 'summary' in datum['blob']:
            results = json.loads(zlib.decompress(tda.performance_artifact_placeholders[-1][4]))
            data = json.loads(datum['blob'])['talos_data'][0]
            assert results["blob"]["performance_series"]["geomean"] == data['summary']['suite']

            # deal with the subtests now
            for i in range(0, len(data['summary']['subtests'])):
                subresults = json.loads(zlib.decompress(tda.performance_artifact_placeholders[-1 - i][4]))
                if 'subtest_signatures' in subresults["blob"]['signature_properties']:
                    # ignore summary signatures
                    continue

                subdata = data['summary']['subtests'][subresults["blob"]['signature_properties']['test']]
                for datatype in ['min', 'max', 'mean', 'median', 'std']:
                    assert subdata[datatype] == subresults["blob"]["performance_series"][datatype]
                if 'value' in subdata.keys():
                    assert subdata['value'] == subresults["blob"]["performance_series"]['value']
        else:
            # FIXME: the talos data blob we're currently using contains datums with summaries and those without
            # we should probably test non-summarized data as well
            pass

    assert result_count == len(tda.performance_artifact_placeholders)
예제 #7
0
    def test_adapt_and_load(self):

        talos_perf_data = SampleData.get_talos_perf_data()
        for talos_datum in talos_perf_data:
            # delete any previously-created perf objects
            # FIXME: because of https://bugzilla.mozilla.org/show_bug.cgi?id=1133273
            # this can be really slow if we have a dev database with lots of
            # performance data in it (if the test succeeds, the transaction
            # will be rolled back so at least it won't pollute the production
            # database)
            PerformanceSignature.objects.all().delete()
            PerformanceDatum.objects.all().delete()

            datum = {
                "job_guid": 'oqiwy0q847365qiu',
                "name": "test",
                "type": "test",
                "blob": talos_datum
            }

            job_data = {
                "oqiwy0q847365qiu": {
                    "id": 1,
                    "result_set_id": 1,
                    "push_timestamp": 1402692388
                }
            }

            reference_data = {
                "option_collection_hash": self.OPTION_HASH,
                "machine_platform": self.MACHINE_PLATFORM,
                "property1": "value1",
                "property2": "value2",
                "property3": "value3"
            }

            # Mimic production environment, the blobs are serialized
            # when the web service receives them
            datum['blob'] = json.dumps({'talos_data': [datum['blob']]})
            tda = TalosDataAdapter()
            tda.adapt_and_load(self.REPO_NAME, reference_data, job_data, datum)

            # base: subtests + one extra result for the summary series
            expected_result_count = len(talos_datum["results"]) + 1

            # we create one performance series per counter
            if 'talos_counters' in talos_datum:
                expected_result_count += len(talos_datum["talos_counters"])

            # result count == number of signatures
            self.assertEqual(expected_result_count,
                             PerformanceSignature.objects.all().count())

            # verify that we have signatures for the subtests
            for (testname, results) in talos_datum["results"].iteritems():
                signature = PerformanceSignature.objects.get(test=testname)
                datum = PerformanceDatum.objects.get(signature=signature)
                if talos_datum.get('summary'):
                    # if we have a summary, ensure the subtest summary values made
                    # it in
                    self.assertEqual(
                        round(talos_datum['summary']['subtests'][testname]['filtered'], 2),
                        datum.value)
                else:
                    # this is an old style talos blob without a summary. these are going
                    # away, so I'm not going to bother testing the correctness. however
                    # let's at least verify that some values are being generated here
                    self.assertTrue(datum.value)

            # if we have counters, verify that the series for them is as expected
            for (counter, results) in talos_datum.get('talos_counters',
                                                      {}).iteritems():
                signature = PerformanceSignature.objects.get(test=counter)
                datum = PerformanceDatum.objects.get(signature=signature)
                self.assertEqual(round(float(results['mean']), 2),
                                 datum.value)

            # we should be left with just the summary series
            signature = PerformanceSignature.objects.get(
                test='',
                suite=talos_datum['testrun']['suite'])
            datum = PerformanceDatum.objects.get(signature=signature)
            if talos_datum.get('summary'):
                self.assertEqual(round(talos_datum['summary']['suite'], 2),
                                 datum.value)
            else:
                # old style talos blob without summary. again, going away,
                # but let's at least test that we have the value
                self.assertTrue(datum.value)