예제 #1
0
def test_DistanceFromBestTable():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)
        model_groups = {
            "stable": ModelGroupFactory(model_type="myStableClassifier"),
            "bad": ModelGroupFactory(model_type="myBadClassifier"),
            "spiky": ModelGroupFactory(model_type="mySpikeClassifier"),
        }

        class StableModelFactory(ModelFactory):
            model_group_rel = model_groups["stable"]

        class BadModelFactory(ModelFactory):
            model_group_rel = model_groups["bad"]

        class SpikyModelFactory(ModelFactory):
            model_group_rel = model_groups["spiky"]

        models = {
            "stable_3y_ago": StableModelFactory(train_end_time="2014-01-01"),
            "stable_2y_ago": StableModelFactory(train_end_time="2015-01-01"),
            "stable_1y_ago": StableModelFactory(train_end_time="2016-01-01"),
            "bad_3y_ago": BadModelFactory(train_end_time="2014-01-01"),
            "bad_2y_ago": BadModelFactory(train_end_time="2015-01-01"),
            "bad_1y_ago": BadModelFactory(train_end_time="2016-01-01"),
            "spiky_3y_ago": SpikyModelFactory(train_end_time="2014-01-01"),
            "spiky_2y_ago": SpikyModelFactory(train_end_time="2015-01-01"),
            "spiky_1y_ago": SpikyModelFactory(train_end_time="2016-01-01"),
        }

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 1))

        class MonthOutEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 31))
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 32))

        class Precision100Factory(ImmediateEvalFactory):
            metric = "precision@"
            parameter = "100_abs"

        class Precision100FactoryMonthOut(MonthOutEvalFactory):
            metric = "precision@"
            parameter = "100_abs"

        class Recall100Factory(ImmediateEvalFactory):
            metric = "recall@"
            parameter = "100_abs"

        class Recall100FactoryMonthOut(MonthOutEvalFactory):
            metric = "recall@"
            parameter = "100_abs"

        for (add_val, PrecFac, RecFac) in (
            (0, Precision100Factory, Recall100Factory),
            (-0.15, Precision100FactoryMonthOut, Recall100FactoryMonthOut),
        ):
            PrecFac(model_rel=models["stable_3y_ago"], value=0.6 + add_val)
            PrecFac(model_rel=models["stable_2y_ago"], value=0.57 + add_val)
            PrecFac(model_rel=models["stable_1y_ago"], value=0.59 + add_val)
            PrecFac(model_rel=models["bad_3y_ago"], value=0.4 + add_val)
            PrecFac(model_rel=models["bad_2y_ago"], value=0.39 + add_val)
            PrecFac(model_rel=models["bad_1y_ago"], value=0.43 + add_val)
            PrecFac(model_rel=models["spiky_3y_ago"], value=0.8 + add_val)
            PrecFac(model_rel=models["spiky_2y_ago"], value=0.4 + add_val)
            PrecFac(model_rel=models["spiky_1y_ago"], value=0.4 + add_val)
            RecFac(model_rel=models["stable_3y_ago"], value=0.55 + add_val)
            RecFac(model_rel=models["stable_2y_ago"], value=0.56 + add_val)
            RecFac(model_rel=models["stable_1y_ago"], value=0.55 + add_val)
            RecFac(model_rel=models["bad_3y_ago"], value=0.35 + add_val)
            RecFac(model_rel=models["bad_2y_ago"], value=0.34 + add_val)
            RecFac(model_rel=models["bad_1y_ago"], value=0.36 + add_val)
            RecFac(model_rel=models["spiky_3y_ago"], value=0.35 + add_val)
            RecFac(model_rel=models["spiky_2y_ago"], value=0.8 + add_val)
            RecFac(model_rel=models["spiky_1y_ago"], value=0.36 + add_val)
        session.commit()
        distance_table = DistanceFromBestTable(db_engine=engine,
                                               models_table="models",
                                               distance_table="dist_table")
        metrics = [
            {
                "metric": "precision@",
                "parameter": "100_abs"
            },
            {
                "metric": "recall@",
                "parameter": "100_abs"
            },
        ]
        model_group_ids = [mg.model_group_id for mg in model_groups.values()]
        distance_table.create_and_populate(
            model_group_ids, ["2014-01-01", "2015-01-01", "2016-01-01"],
            metrics)

        # get an ordered list of the models/groups for a particular metric/time
        query = """
            select model_id, raw_value, dist_from_best_case, dist_from_best_case_next_time
            from dist_table where metric = %s and parameter = %s and train_end_time = %s
            order by dist_from_best_case
        """

        prec_3y_ago = engine.execute(query,
                                     ("precision@", "100_abs", "2014-01-01"))
        assert [row for row in prec_3y_ago] == [
            (models["spiky_3y_ago"].model_id, 0.8, 0, 0.17),
            (models["stable_3y_ago"].model_id, 0.6, 0.2, 0),
            (models["bad_3y_ago"].model_id, 0.4, 0.4, 0.18),
        ]

        recall_2y_ago = engine.execute(query,
                                       ("recall@", "100_abs", "2015-01-01"))
        assert [row for row in recall_2y_ago] == [
            (models["spiky_2y_ago"].model_id, 0.8, 0, 0.19),
            (models["stable_2y_ago"].model_id, 0.56, 0.24, 0),
            (models["bad_2y_ago"].model_id, 0.34, 0.46, 0.19),
        ]

        assert distance_table.observed_bounds == {
            ("precision@", "100_abs"): (0.39, 0.8),
            ("recall@", "100_abs"): (0.34, 0.8),
        }
예제 #2
0
def test_DistanceFromBestTable():
    with testing.postgresql.Postgresql() as postgresql:
        engine = create_engine(postgresql.url())
        ensure_db(engine)
        init_engine(engine)
        model_groups = {
            'stable': ModelGroupFactory(model_type='myStableClassifier'),
            'bad': ModelGroupFactory(model_type='myBadClassifier'),
            'spiky': ModelGroupFactory(model_type='mySpikeClassifier'),
        }

        class StableModelFactory(ModelFactory):
            model_group_rel = model_groups['stable']

        class BadModelFactory(ModelFactory):
            model_group_rel = model_groups['bad']

        class SpikyModelFactory(ModelFactory):
            model_group_rel = model_groups['spiky']

        models = {
            'stable_3y_ago': StableModelFactory(train_end_time='2014-01-01'),
            'stable_2y_ago': StableModelFactory(train_end_time='2015-01-01'),
            'stable_1y_ago': StableModelFactory(train_end_time='2016-01-01'),
            'bad_3y_ago': BadModelFactory(train_end_time='2014-01-01'),
            'bad_2y_ago': BadModelFactory(train_end_time='2015-01-01'),
            'bad_1y_ago': BadModelFactory(train_end_time='2016-01-01'),
            'spiky_3y_ago': SpikyModelFactory(train_end_time='2014-01-01'),
            'spiky_2y_ago': SpikyModelFactory(train_end_time='2015-01-01'),
            'spiky_1y_ago': SpikyModelFactory(train_end_time='2016-01-01'),
        }

        class ImmediateEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: o.model_rel.train_end_time)
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 1))

        class MonthOutEvalFactory(EvaluationFactory):
            evaluation_start_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 31))
            evaluation_end_time = factory.LazyAttribute(
                lambda o: _sql_add_days(o.model_rel.train_end_time, 32))

        class Precision100Factory(ImmediateEvalFactory):
            metric = 'precision@'
            parameter = '100_abs'

        class Precision100FactoryMonthOut(MonthOutEvalFactory):
            metric = 'precision@'
            parameter = '100_abs'

        class Recall100Factory(ImmediateEvalFactory):
            metric = 'recall@'
            parameter = '100_abs'

        class Recall100FactoryMonthOut(MonthOutEvalFactory):
            metric = 'recall@'
            parameter = '100_abs'

        for (add_val, PrecFac, RecFac) in ((0, Precision100Factory,
                                            Recall100Factory),
                                           (-0.15, Precision100FactoryMonthOut,
                                            Recall100FactoryMonthOut)):
            PrecFac(model_rel=models['stable_3y_ago'], value=0.6 + add_val)
            PrecFac(model_rel=models['stable_2y_ago'], value=0.57 + add_val)
            PrecFac(model_rel=models['stable_1y_ago'], value=0.59 + add_val)
            PrecFac(model_rel=models['bad_3y_ago'], value=0.4 + add_val)
            PrecFac(model_rel=models['bad_2y_ago'], value=0.39 + add_val)
            PrecFac(model_rel=models['bad_1y_ago'], value=0.43 + add_val)
            PrecFac(model_rel=models['spiky_3y_ago'], value=0.8 + add_val)
            PrecFac(model_rel=models['spiky_2y_ago'], value=0.4 + add_val)
            PrecFac(model_rel=models['spiky_1y_ago'], value=0.4 + add_val)
            RecFac(model_rel=models['stable_3y_ago'], value=0.55 + add_val)
            RecFac(model_rel=models['stable_2y_ago'], value=0.56 + add_val)
            RecFac(model_rel=models['stable_1y_ago'], value=0.55 + add_val)
            RecFac(model_rel=models['bad_3y_ago'], value=0.35 + add_val)
            RecFac(model_rel=models['bad_2y_ago'], value=0.34 + add_val)
            RecFac(model_rel=models['bad_1y_ago'], value=0.36 + add_val)
            RecFac(model_rel=models['spiky_3y_ago'], value=0.35 + add_val)
            RecFac(model_rel=models['spiky_2y_ago'], value=0.8 + add_val)
            RecFac(model_rel=models['spiky_1y_ago'], value=0.36 + add_val)
        session.commit()
        distance_table = DistanceFromBestTable(db_engine=engine,
                                               models_table='models',
                                               distance_table='dist_table')
        metrics = [{
            'metric': 'precision@',
            'parameter': '100_abs'
        }, {
            'metric': 'recall@',
            'parameter': '100_abs'
        }]
        model_group_ids = [mg.model_group_id for mg in model_groups.values()]
        distance_table.create_and_populate(
            model_group_ids, ['2014-01-01', '2015-01-01', '2016-01-01'],
            metrics)

        # get an ordered list of the models/groups for a particular metric/time
        query = '''
            select model_id, raw_value, dist_from_best_case, dist_from_best_case_next_time
            from dist_table where metric = %s and parameter = %s and train_end_time = %s
            order by dist_from_best_case
        '''

        prec_3y_ago = engine.execute(query,
                                     ('precision@', '100_abs', '2014-01-01'))
        assert [row for row in prec_3y_ago] == [
            (models['spiky_3y_ago'].model_id, 0.8, 0, 0.17),
            (models['stable_3y_ago'].model_id, 0.6, 0.2, 0),
            (models['bad_3y_ago'].model_id, 0.4, 0.4, 0.18),
        ]

        recall_2y_ago = engine.execute(query,
                                       ('recall@', '100_abs', '2015-01-01'))
        assert [row for row in recall_2y_ago] == [
            (models['spiky_2y_ago'].model_id, 0.8, 0, 0.19),
            (models['stable_2y_ago'].model_id, 0.56, 0.24, 0),
            (models['bad_2y_ago'].model_id, 0.34, 0.46, 0.19),
        ]

        assert distance_table.observed_bounds == {
            ('precision@', '100_abs'): (0.39, 0.8),
            ('recall@', '100_abs'): (0.34, 0.8),
        }