def poll_task(self, context, tick): # Check joystick buttons to see if we need to change mode or reset anything if context.button_pressed(SixAxis.BUTTON_TRIANGLE): self._set_relative_motion(context) elif context.button_pressed(SixAxis.BUTTON_SQUARE): self._set_absolute_motion(context) elif context.button_pressed(SixAxis.BUTTON_CIRCLE): self.dead_reckoning.reset() elif context.button_pressed(SixAxis.BUTTON_CROSS): self.limit_mode = (self.limit_mode + 1) % 3 # Check to see whether the minimum interval between dead reckoning updates has passed if self.pose_update_interval.should_run(): self.dead_reckoning.update_from_counts(context.arduino.get_encoder_values()) # Update the display if appropriate if self.pose_display_interval.should_run(): pose = self.dead_reckoning.pose mode_string = 'ABS' if self.bearing_zero is None: mode_string = 'REL' if self.limit_mode == 1: mode_string += '*' elif self.limit_mode == 2: mode_string += '+' context.lcd.set_text(row1='x:{:7.0f}, b:{:3.0f}'.format(pose.position.x, degrees(pose.orientation)), row2='y:{:7.0f}, {}'.format(pose.position.y, mode_string)) # Get a vector from the left hand analogue stick and scale it up to our # maximum translation speed, this will mean we go as fast directly forward # as possible when the stick is pushed fully forwards translate = Vector2( context.joystick.axes[0].corrected_value(), context.joystick.axes[1].corrected_value()) * self.max_trn ':type : euclid.Vector2' # If we're in absolute mode, rotate the translation vector appropriately if self.bearing_zero is not None: translate = rotate_vector(translate, self.bearing_zero - self.dead_reckoning.pose.orientation) # Get the rotation in radians per second from the right hand stick's X axis, # scaling it to our maximum rotational speed. When standing still this means # that full right on the right hand stick corresponds to maximum speed # clockwise rotation. rotate = context.joystick.axes[2].corrected_value() * self.max_rot # Given the translation vector and rotation, use the chassis object to calculate # the speeds required in revolutions per second for each wheel. We'll scale these by the # wheel maximum speeds to get a range of -1.0 to 1.0 # This is a :class:`triangula.chassis.WheelSpeeds` containing the speeds and any # scaling applied to bring the requested velocity within the range the chassis can # actually perform. motion = Motion(translation=translate, rotation=rotate) if self.limit_mode == 2: motion = self.motion_limit.limit_and_return(motion) wheel_speeds = context.chassis.get_wheel_speeds(motion=motion) speeds = wheel_speeds.speeds # Send desired motor speed values over the I2C bus to the Arduino, which will # then send the appropriate messages to the Syren10 controllers over its serial # line as well as lighting up a neopixel ring to provide additional feedback # and bling. power = [speeds[i] / context.chassis.wheels[i].max_speed for i in range(0, 3)] if self.limit_mode == 1: power = self.rate_limit.limit_and_return(power) context.arduino.set_motor_power(power[0], power[1], power[2])
for translation in [ Vector2(x * 10, y * 10) for x in range(0, 6) for y in range(0, 6) ]: final_pose = Pose().translate(translation).calculate_pose_change( motion=motion, time_delta=time_delta) translated_target = target_pose.translate(translation) try: assert final_pose.is_close_to(translated_target) except AssertionError as e: print 'Failed: {} not {}, translation {}, motion {}, time_delta {}'.format( final_pose, translated_target, translation, motion, time_delta) raise e check( Motion(translation=rotate_vector(Vector2(0, -100 * pi / 2), radians(45)), rotation=radians(90)), 1.0, Pose(position=Point2(-sqrt(2) * 100, 0), orientation=radians(90))) check(Motion(rotation=radians(30)), 0.5, Pose(orientation=radians(15))) check(Motion(translation=Vector2(0, 100 * pi / 2), rotation=radians(90)), 1.0, Pose(position=Point2(100, 100), orientation=radians(90))) check(Motion(translation=Vector2(0, 100 * pi / 2), rotation=radians(90)), 2.0, Pose(position=Point2(200, 0), orientation=radians(180))) check(Motion(translation=Vector2(0, 100 * pi / 2), rotation=radians(-90)), 2.0, Pose(position=Point2(-200, 0), orientation=radians(180))) check(Motion(translation=Vector2(0, 100 * pi), rotation=radians(180)), 0.5,
max_rotations_per_second=1.0) def check(motion, time_delta, target_pose): for translation in [Vector2(x * 10, y * 10) for x in range(0, 6) for y in range(0, 6)]: final_pose = Pose().translate(translation).calculate_pose_change(motion=motion, time_delta=time_delta) translated_target = target_pose.translate(translation) try: assert final_pose.is_close_to(translated_target) except AssertionError as e: print 'Failed: {} not {}, translation {}, motion {}, time_delta {}'.format(final_pose, translated_target, translation, motion, time_delta) raise e check(Motion(translation=rotate_vector(Vector2(0, -100 * pi / 2), radians(45)), rotation=radians(90)), 1.0, Pose(position=Point2(-sqrt(2) * 100, 0), orientation=radians(90))) check(Motion(rotation=radians(30)), 0.5, Pose(orientation=radians(15))) check(Motion(translation=Vector2(0, 100 * pi / 2), rotation=radians(90)), 1.0, Pose(position=Point2(100, 100), orientation=radians(90))) check(Motion(translation=Vector2(0, 100 * pi / 2), rotation=radians(90)), 2.0, Pose(position=Point2(200, 0), orientation=radians(180)))