def Rnet(pretrained=True, input_shape=(3, 24, 24), **kwargs): if input_shape is not None and len(input_shape) == 3: input_shape = tuple(input_shape) else: input_shape = (3, 24, 24) rnet = ImageDetectionModel(input_shape=(3, 24, 24), output=r_net()) rnet.preprocess_flow = [Normalize(0, 255), image_backend_adaption] if pretrained == True: download_model_from_google_drive('1CH7z133_KrcWMx9zXAblMCV8luiQ3wph', dirname, 'rnet.pth') recovery_model = load(os.path.join(dirname, 'rnet.pth')) recovery_model = fix_layer(recovery_model) recovery_model.to(_device) rnet.model = recovery_model return rnet
def Onet(pretrained=True, input_shape=(3, 48, 48), **kwargs): if input_shape is not None and len(input_shape) == 3: input_shape = tuple(input_shape) else: input_shape = (3, 48, 48) onet = ImageDetectionModel(input_shape=(3, 48, 48), output=o_net()) onet.preprocess_flow = [Normalize(0, 255), image_backend_adaption] if pretrained == True: download_model_from_google_drive('1a1dAlSzJOAfIz77Ic38JMQJYWDG_b7-_', dirname, 'onet.pth') recovery_model = load(os.path.join(dirname, 'onet.pth')) recovery_model = fix_layer(recovery_model) recovery_model.to(_device) onet.model = recovery_model return onet
def Pnet(pretrained=True, input_shape=(3, 12, 12), **kwargs): if input_shape is not None and len(input_shape) == 3: input_shape = tuple(input_shape) else: input_shape = (3, 12, 12) pnet = ImageDetectionModel(input_shape=(3, 12, 12), output=p_net()) pnet.preprocess_flow = [normalize(0, 255), image_backend_adaption] if pretrained == True: download_model_from_google_drive('1w9ahipO8D9U1dAXMc2BewuL0UqIBYWSX', dirname, 'pnet.pth') recovery_model = torch.load(os.path.join(dirname, 'pnet.pth')) recovery_model = fix_layer(recovery_model) recovery_model.to(_device) pnet.model = recovery_model return pnet