# Import trough catalog path_troughcat = '/data2/brouwer/MergedCatalogues/trough_catalogues' troughcatname = '/trough_catalog_gama_absmag_masked.fits' # Full directory & name of the trough catalogue troughcatfile = '%s/%s' % (path_troughcat, troughcatname) troughcat = pyfits.open(troughcatfile, memmap=True)[1].data # List of the observables of all sources in the KiDS catalogue Ptheta = troughcat['Ptheta5'] Wtheta = poly_func_weights(Ptheta) outputnames = ['Ptheta5', 'Wtheta5'] output = [Ptheta, Wtheta] utils.write_catalog('%s/chi2_trough_weights.fits' % path_troughcat, np.arange(len(Wtheta)), outputnames, output) # Calculating covariance of the chi2 weighted trough signal path_lenssel_weighted = 'No_bins_gama_absmag/Pmasktheta5_0p8_1-Ptheta5_0_0p5_lw-Wtheta5/' esdfiles_weighted = np.array([ '/%s/%s/%s/%s' % (path_sheardata, path_lenssel_weighted, path_cosmo, path_filename) ]) data_x, data_y_weighted, error_h_weighted, error_l_weighted = utils.read_esdfiles( esdfiles_weighted) covfiles_weighted = np.array([ e.replace('bins_%s.txt' % blind, 'matrix_%s.txt' % blind) for e in esdfiles_weighted ]) data_weighted = data_y_weighted[0]
# Defining the names of the columns outputnames = ['RA', 'DEC'] [outputnames.append('Ngaltheta%i' % (theta * 60)) for theta in thetalist] [outputnames.append('Ngridtheta%i' % (theta * 60)) for theta in thetalist] [outputnames.append('Pgridtheta%i' % (theta * 60)) for theta in thetalist] [outputnames.append('rhotheta%i' % (theta * 60)) for theta in thetalist] [outputnames.append('Ptheta%i' % (theta * 60)) for theta in thetalist] # Defining the output output = [gridRA, gridDEC] [output.append(Ngaltheta[theta, :]) for theta in range(Ntheta)] [output.append(Ngridtheta[theta, :]) for theta in range(Ntheta)] [output.append(Pgridtheta[theta, :]) for theta in range(Ntheta)] [output.append(rhotheta[theta, :]) for theta in range(Ntheta)] [output.append(Ptheta[theta, :]) for theta in range(Ntheta)] print('Writing output catalogue...') filename = '/data2/brouwer/MergedCatalogues/trough_catalogues/mock_trough_catalogue.fits' utils.write_catalog(filename, gridID, outputnames, output) # Writing the mean galaxy density information to a text file field_density = field_galaxies / field_area field_header = '1: Number of galaxies, 2: Effective area (arcmin^2), 3: Galaxy density (arcmin^-2)' density_info = np.array([field_galaxies, field_area, field_density]) filename = 'density_info.txt' np.savetxt(filename, density_info, delimiter=' ', header=field_header) print('Written:', filename)
for theta in range(len(thetalist)): troughcatname = 'trough_catalog_%s.fits' % sel[theta] # Full directory & name of the trough catalogue troughcatfile = '%s/%s' % (path_troughcat, troughcatname) troughcat = pyfits.open(troughcatfile, memmap=True)[1].data print('Creating weight catalog for:', troughcatfile) # Atheta = poly_func_amps(Ptheta) # poly_func_amps = np.poly1d(poly_param_amps[theta]) # outputnames.append('Atheta%g'%thetalist[theta]) # output.append(np.abs(Atheta)) # Write weight fits-file Ptheta = troughcat['Ptheta%g' % thetalist[theta]] poly_func_weights = np.poly1d(poly_param_weights[theta]) Wtheta = poly_func_weights(Ptheta) outputnames.append('Ptheta%g' % thetalist[theta]) outputnames.append('Wtheta%g' % thetalist[theta]) output.append(np.abs(Ptheta)) output.append(np.abs(Wtheta)) weightcatname = '%s/amplitude_trough_weights_%s.fits' % ( path_troughcat, sel[0]) utils.write_catalog(weightcatname, np.arange(len(Ptheta)), outputnames, output)
outputnames = ['RA', 'DEC'] output = [gridRA_tot, gridDEC_tot] [ outputnames.append('Nmasktheta%g' % (theta * 60)) for theta in thetalist ] [output.append(Nmasktheta_tot[theta, :]) for theta in range(Ntheta)] [ outputnames.append('Pmasktheta%g' % (theta * 60)) for theta in thetalist ] [output.append(Pmasktheta_tot[theta, :]) for theta in range(Ntheta)] utils.write_catalog(maskfilename, gridID_tot, outputnames, output) # Save the effective survey area into a text file for later use np.savetxt(masktextname, field_area, header='Total effective field area (in arcmin^2)') print('Written:', masktextname) else: # Import the masked percentage print('Importing mask from:', maskfilename) maskcat = pyfits.open(maskfilename, memmap=True)[1].data Nmasktheta_tot = np.array([ (maskcat['Nmasktheta%g' % (theta * 60)])[0:Ngrid_tot] for theta in thetalist
# Index of the grid point in the flag list field_index = sampindex_field[s] + g # If the point is not flagged (not flagged = 1), flag all overlapping grid points (flagged = 0). if selected[field_index] == 1: removeindex = gridoverlap[(sampxgrid == g) & (gridoverlap != field_index)] selected[removeindex] = 0. # If the point is already flagged, do nothing. else: pass # Remove overlapping mask points selmask = (selected == 1) print('Selected:', np.sum(selmask), '/', len(selmask)) # Print output to file filename = '/data2/brouwer/MergedCatalogues/Masks/%s_mask_%s_%gdeg.fits' % ( cat, fieldnames[f], gridspace_mask) outputnames = ['RA', 'DEC', 'mask'] output = [ RAlist_field[selmask], DEClist_field[selmask], masklist_field[selmask] ] print('Writing output catalogue...') utils.write_catalog(filename, np.arange(len(RAlist_field[selmask])), outputnames, output)