# Copyright (c) 2015 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import trustedanalytics as ta import sys ta.create_credentials_file('credentials') ta.connect() print 'ta.server: %s' % ta.server ds = sys.argv[1] sc = [("label", ta.float64), ("feature1", ta.float64), ("feature2", ta.float64), ("feature3", ta.float64), ("feature4", ta.float64), ("feature5", ta.float64), ("feature6", ta.float64), ("feature7", ta.float64), ("feature8", ta.float64), ("feature9", ta.float64)] csv = ta.CsvFile(ds, sc, ',', 0) frame = ta.Frame(csv) m = ta.LibsvmModel(name='model_name') m.train(frame, "label", ["feature1", "feature2", "feature3", "feature4", "feature5", "feature6", "feature7", "feature8", "feature9"], epsilon=0.000001, degree=3, gamma=0.11, coef=0.0, nu=0.0001, cache_size=100.0, shrinking=1, probability=0, c=1.0, p=0.1, nr_weight=0) print m.publish()
# # Copyright (c) 2016 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import trustedanalytics as ta from common import parse_arguments, check_uaa_file parameters = parse_arguments() ta.create_credentials_file(parameters.uaa_file_name) check_uaa_file(parameters.uaa_file_name) query = "select * from " + parameters.database_name + "." + parameters.table_name print("\nQuery: {}".format(query)) hq = ta.HiveQuery(query) frame = ta.Frame(hq)
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import trustedanalytics as ta from common import parse_arguments, check_uaa_file parameters = parse_arguments() directory = os.path.dirname(__file__) uaa_file_name = os.path.join(directory, parameters.uaa_file_name) ta.create_credentials_file(uaa_file_name) check_uaa_file(uaa_file_name) hdfs_csv_path = parameters.target_uri schema = [('doc_id', str), ('word_id', str), ('word_count', ta.int64)] csv_file = ta.CsvFile(hdfs_csv_path, schema) frame = ta.Frame(csv_file) model = ta.LdaModel() model.train(frame, 'doc_id', 'word_id', 'word_count', max_iterations=3, num_topics=2) print("hdfs_model_path: " + model.publish())