예제 #1
0
파일: std.py 프로젝트: tchaton/tsd
def scatter_std(src, index, dim=-1, out=None, dim_size=None, unbiased=True):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytsd/
            master/docs/source/_figures/std.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Computes the standard-deviation from all values from the :attr:`src` tensor
    into :attr:`out` at the indices specified in the :attr:`index` tensor along
    a given axis :attr:`dim` (`cf.` :meth:`~tsd.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \sqrt{\frac{\sum_j {\left( x_j - \overline{x}_i
        \right)}^2}{N_i - 1}}

    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`. :math:`N_i` and :math:`\overline{x}_i`
    indicate the number of indices referencing :math:`i` and their mean value,
    respectively.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        unbiased (bool, optional): If set to :obj:`False`, then the standard-
            deviation will be calculated via the biased estimator.
            (default: :obj:`True`)

    :rtype: :class:`Tensor`
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value=0)

    tmp = None if out is None else out.clone().fill_(0)
    tmp = scatter_add(src, index, dim, tmp, dim_size)

    count = None if out is None else out.clone().fill_(0)
    count = scatter_add(torch.ones_like(src), index, dim, count, dim_size)

    mean = tmp / count.clamp(min=1)

    var = (src - mean.gather(dim, index))
    var = var * var
    out = scatter_add(var, index, dim, out, dim_size)
    out = out / (count - 1 if unbiased else count).clamp(min=1)
    out = torch.sqrt(out)

    return out
예제 #2
0
def scatter_div(src, index, dim=-1, out=None, dim_size=None, fill_value=1):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytsd/
            master/docs/source/_figures/div.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Divides all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along a given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions divide** (`cf.` :meth:`~tsd.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i \cdot \prod_j
        \frac{1}{\mathrm{src}_j}

    where :math:`\prod_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. (default: :obj:`1`)

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from tsd import scatter_div

        src = torch.Tensor([[2, 1, 1, 4, 2], [1, 2, 1, 2, 4]]).float()
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        out = src.new_ones((2, 6))

        out = scatter_div(src, index, out=out)

        print(out)

    .. testoutput::

       tensor([[1.0000, 1.0000, 0.2500, 0.5000, 0.5000, 1.0000],
               [0.5000, 0.2500, 0.5000, 1.0000, 1.0000, 1.0000]])
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    if src.size(dim) == 0:  # pragma: no cover
        return out
    return ScatterDiv.apply(out, src, index, dim)
예제 #3
0
파일: min.py 프로젝트: tchaton/tsd
def scatter_min(src, index, dim=-1, out=None, dim_size=None, fill_value=None):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytsd/
            master/docs/source/_figures/min.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Minimizes all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along a given axis
    :attr:`dim`.If multiple indices reference the same location, their
    **contributions minimize** (`cf.` :meth:`~tsd.scatter_add`).
    The second return tensor contains index location in :attr:`src` of each
    minimum value (known as argmin).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \min(\mathrm{out}_i, \min_j(\mathrm{src}_j))

    where :math:`\min_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. If set to :obj:`None`,
            the output tensor is filled with the greatest possible value of
            :obj:`src.dtype`. (default: :obj:`None`)

    :rtype: (:class:`Tensor`, :class:`LongTensor`)

    .. testsetup::

        import torch

    .. testcode::

        from tsd import scatter_min

        src = torch.Tensor([[-2, 0, -1, -4, -3], [0, -2, -1, -3, -4]])
        index = torch.tensor([[ 4, 5,  4,  2,  3], [0,  0,  2,  2,  1]])
        out = src.new_zeros((2, 6))

        out, argmin = scatter_min(src, index, out=out)

        print(out)
        print(argmin)

    .. testoutput::

       tensor([[ 0.,  0., -4., -3., -2.,  0.],
               [-2., -4., -3.,  0.,  0.,  0.]])
       tensor([[-1, -1,  3,  4,  0,  1],
               [ 1,  4,  3, -1, -1, -1]])
    """
    if fill_value is None:
        op = torch.finfo if torch.is_floating_point(src) else torch.iinfo
        fill_value = op(src.dtype).max
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    if src.size(dim) == 0:  # pragma: no cover
        return out, index.new_full(out.size(), -1)
    return ScatterMin.apply(out, src, index, dim)
예제 #4
0
파일: add.py 프로젝트: tchaton/tsd
def scatter_add(src, index, dim=-1, out=None, dim_size=None, fill_value=0):
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/add.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Sums all values from the :attr:`src` tensor into :attr:`out` at the indices
    specified in the :attr:`index` tensor along a given axis :attr:`dim`. For
    each value in :attr:`src`, its output index is specified by its index in
    :attr:`input` for dimensions outside of :attr:`dim` and by the
    corresponding value in :attr:`index` for dimension :attr:`dim`. If
    multiple indices reference the same location, their **contributions add**.

    Formally, if :attr:`src` and :attr:`index` are n-dimensional tensors with
    size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})` and
    :attr:`dim` = `i`, then :attr:`out` must be an n-dimensional tensor with
    size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`. Moreover, the
    values of :attr:`index` must be between `0` and `out.size(dim) - 1`.
    Both :attr:`src` and :attr:`index` are broadcasted in case their dimensions
    do not match.

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i + \sum_j \mathrm{src}_j

    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

    Args:
        src (Tensor): The source tensor.
        index (LongTensor): The indices of elements to scatter.
        dim (int, optional): The axis along which to index.
            (default: :obj:`-1`)
        out (Tensor, optional): The destination tensor. (default: :obj:`None`)
        dim_size (int, optional): If :attr:`out` is not given, automatically
            create output with size :attr:`dim_size` at dimension :attr:`dim`.
            If :attr:`dim_size` is not given, a minimal sized output tensor is
            returned. (default: :obj:`None`)
        fill_value (int, optional): If :attr:`out` is not given, automatically
            fill output tensor with :attr:`fill_value`. (default: :obj:`0`)

    :rtype: :class:`Tensor`

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_add

        src = torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        out = src.new_zeros((2, 6))

        out = scatter_add(src, index, out=out)

        print(out)

    .. testoutput::

       tensor([[0., 0., 4., 3., 3., 0.],
               [2., 4., 4., 0., 0., 0.]])
    """
    src, out, index, dim = gen(src, index, dim, out, dim_size, fill_value)
    return out.scatter_add_(dim, index, src)