예제 #1
0
    def __init__(self, to_combine, *args, **kwargs):
        super(OpSimpleCombiner, self).__init__(*args, **kwargs)

        operators = [build_operator(item, parent=self) for item in to_combine]

        combiner = OpMultiArrayStacker(parent=self)
        combiner.AxisFlag.setValue('c')
        combiner.Images.resize(len(operators))

        for index, operator in enumerate(operators):
            combiner.Images[index].connect(operator.Output)
            operator.Input.connect(self.Input)

        valid_combiner = OpMultiArrayStacker(parent=self)
        valid_combiner.AxisFlag.setValue('c')
        valid_operators = [op for op in operators if hasattr(op, "Valid")]
        valid_combiner.Images.resize(len(valid_operators))

        for index, operator in enumerate(valid_operators):
            valid_combiner.Images[index].connect(operator.Valid)

        self._combiner = combiner
        self._valid_combiner = valid_combiner
        self._operators = operators
        self.Output.connect(combiner.Output)
예제 #2
0
파일: mlp.py 프로젝트: burgerdev/hostload
    def _train(self):
        logger.info("============ TRAINING SUPERVISED ============")
        tds = self._opTrainData
        vds = self._opValidData

        if self._regression:
            # channel = "valid_objective"
            channel = "train_objective"
        else:
            channel = "valid_output_misclass"

        ext = []
        if channel is not None:
            keep = MonitorBasedSaveBest.build(dict(channel=channel))
            ext.append(keep)
            lra = sgd.MonitorBasedLRAdjuster(channel_name=channel)
            ext.append(lra)

        for other in self._extensions:
            ext.append(build_operator(other, workingdir=self._workingdir))

        self.extensions_used = ext

        if self._terminate_early:
            termination_channel = channel
        else:
            termination_channel = None
        criteria = get_termination_criteria(epochs=self._max_epochs,
                                            channel=termination_channel)

        monitors = {'train': tds, 'valid': vds}

        algorithm = sgd.SGD(learning_rate=self._learning_rate,
                            batch_size=self._batch_size,
                            learning_rule=learning_rule.Momentum(
                                init_momentum=self._init_momentum),
                            termination_criterion=criteria,
                            monitoring_dataset=monitors,
                            monitor_iteration_mode="sequential",
                            monitoring_batch_size=self._monitor_batch_size,
                            seed=None,
                            train_iteration_mode='sequential')

        trainer = train.Train(dataset=tds, model=self._nn,
                              algorithm=algorithm,
                              extensions=ext)
        trainer.main_loop()

        # set best parameters to layer
        params = keep.best_params
        best_cost = keep.best_cost
        logger.info("Restoring model with cost {}".format(best_cost))
        self._nn.set_param_values(params)

        for ext in self.extensions_used:
            if isinstance(ext, PersistentTrainExtension):
                ext.store()
예제 #3
0
    def __init__(self, workingdir=None, config=None):
        self._config = None
        self._graph = Graph()
        self._workingdir = workingdir
        self._start_time = None

        kwargs = dict(graph=self._graph)

        if config is None:
            return

        for key in config:
            assert isinstance(key, str)
            attr = "_" + key
            assert not hasattr(self, attr)

            if key == "preprocessing":
                value = [build_operator(subdict, **kwargs)
                         for subdict in config[key]]
            else:
                subdir = os.path.join(workingdir, key)
                try:
                    os.mkdir(subdir)
                except OSError as err:
                    if "exists" in str(err):
                        # that's fine
                        pass
                    else:
                        raise

                kwargs["workingdir"] = subdir
                value = build_operator(config[key], **kwargs)

            setattr(self, attr, value)

        self._initialize()

        self._config = config
예제 #4
0
    def testbuild_operator(self):
        class NotBuildable(OpArrayPiper):
            @classmethod
            def build(cls, config, parent=None, graph=None, workingdir=None):
                return cls(parent=parent, graph=graph)

        configs = ({"class": OpBuildableArrayPiper},
                   {"class": NotBuildable},
                   OpArrayPiper)
        kws = ({"graph": Graph()}, {"graph": Graph(), "workingdir": "temp"})

        for config in configs:
            for kwargs in kws:
                op = build_operator(config, **kwargs)
                print(op.__class__)
                assert isinstance(op, Operator), str(op)
예제 #5
0
    def init_model(self, model):
        sub_inits = self._initializers
        if isinstance(sub_inits, LayerWeightInitializer):
            sub_inits = repeat(sub_inits)

        last_dim = model.get_input_space().dim
        visited_layers = []
        for init, layer in izip(sub_inits, model.layers):
            if isinstance(init, dict):
                init = build_operator(init, parent=self)
            next_dim = layer.get_output_space().dim
            if isinstance(init, OperatorLayerWeightInitializer):
                forward = OpForwardLayers(visited_layers, parent=self)
                forward.Input.connect(self.Data)
                init.Input.resize(2)
                init.Input[1].connect(self.Target)
                init.Input[0].connect(forward.Output)

            init.init_layer(layer, nvis=last_dim, nhid=next_dim)
            last_dim = next_dim
            visited_layers.append(layer)