def setUp(self): self._num_points = 10 self._pop_size = 5 gen = TSPGenerator(self._num_points) self._data = gen.generate() self._distances = distance_matrix(self._data, self._data)
def setUp(self): self._num_points = 10 self._pop_size = 5 gen = TSPGenerator(self._num_points) self._data = gen.generate() self._distances = distance_matrix(self._data, self._data) popGen = SimplePopulationGenerator(self._pop_size) self._population = popGen.generate(self._data)
def setUp(self): self._num_points = 10 self._pop_size = 20 gen = TSPGenerator(self._num_points) self._data = gen.generate() self._distances = distance_matrix(self._data, self._data) popGen = SimplePopulationGenerator(self._pop_size) self._population = popGen.generate(self._distances[0])
def setUp(self): self._num_points = 30 gen = TSPGenerator(self._num_points) self._data = gen.generate()
tuner = GeneticAlgorithmParameterEstimation(NUM_DATASETS, NUM_POINTS) params = { "num_epochs": [1000], "num_elites": [0, 1, 2], "generator": ["SimplePopulationGenerator"], "generator_population_size": [40], "selector": ["TournamentSelection"], "selector_tournament_size": [10], "crossover": ["OrderCrossover"], "crossover_pcross": [0.9], "mutator": ["InversionMutation"], "mutator_pmutate": [0.2] } elite_results = tuner.perform_grid_search(params) elite_results gen = TSPGenerator(NUM_POINTS) data = gen.generate() all_fitness = [] for i, row in elite.iterrows(): params = row.to_dict() sim = Simulator(**params) sim.evolve(data) all_fitness.append(sim.get_min_fitness()[::10]) df = pd.DataFrame(np.array(all_fitness)) gen = TSPGenerator(NUM_POINTS) data = gen.generate() all_fitness = [] for i, row in elite_results.iterrows():