예제 #1
0
    def test_close_open_positions_with_open_no_force_all_write(self):
        # close values DataFrame
        cv_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)[['close']]

        # input_data DataFrame
        id_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)

        ts = TradingSimulation(input_data_index=id_df.index,
                               close_values=cv_df,
                               max_exposure=None,
                               short_exposure_factor=1.5)

        ts._portfolio = pd.read_csv(
            './data/portfolio_simulation_data_all_open_ten_rounds.csv',
            parse_dates=True,
            index_col=0).to_numpy(dtype=np.float64, copy=True)

        portfolio_expected_result = pd.read_csv(
            './data/portfolio_simulation_data_all_open_ten_rounds.csv',
            parse_dates=True,
            index_col=0).to_numpy(dtype=np.float64, copy=True)

        portfolio_expected_result[0, 1] = 2.0
        portfolio_expected_result[2, 1] = 2.0
        portfolio_expected_result[5, 1] = 2.0

        portfolio_expected_result[5, 2] = 40.00

        ts._simulation_data['exposure'].iat[8] = 100.0
        ts._simulation_data['earnings'].iat[8] = 200.0
        ts._portfolio[5, 2] = 40.00

        ts._close_values[9, 0] = 24.0

        earnings, closed_exposure = ts._closeOpenPositions(i_index=9)

        exposure_expected = 20.50 + 22.50 + 40.00

        earnings_expected = (2 * 24.0 - 20.5 - 22.5) + \
                            ((40.00 / 1.5) - 1 * 24.0)

        self.assertEqual(earnings, earnings_expected)

        self.assertEqual(closed_exposure, exposure_expected)

        np.testing.assert_equal(
            ts._simulation_data['exposure'].iat[9],
            ts._simulation_data['exposure'].iat[8] - exposure_expected)

        np.testing.assert_equal(
            ts._simulation_data['earnings'].iat[9],
            ts._simulation_data['earnings'].iat[8] + earnings_expected)

        np.testing.assert_equal(ts._portfolio, portfolio_expected_result)
예제 #2
0
    def test_close_simulation(self):
        # close values DataFrame
        cv_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)[['close']]

        # input_data DataFrame
        id_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)

        ts = TradingSimulation(input_data_index=id_df.index,
                               close_values=cv_df,
                               max_exposure=None,
                               short_exposure_factor=1.5)

        self.maxDiff = None

        statistics_expected_result = {
            'number_of_trading_days': 3169,
            'number_of_buy_signals': 1297,
            'number_of_ignored_buy_signals': 1029,
            'number_of_sell_signals': 1152,
            'number_of_ignored_sell_signals': 741,
            'last_stock_value': 140.41,
            'last_exposure': 3268.0,
            'last_open_long_positions': 397,
            'last_open_short_positions': 396,
            'last_portfolio_value': 3368.0,
            'last_earnings': 3468.0,
            'final_balance': 3568.0
        }

        ts._simulation_data = pd.read_csv(
            './data/simulation_data_full_with_actions.csv',
            parse_dates=True,
            index_col=0)

        ts._portfolio = pd.read_csv(
            './data/portfolio_simulation_data_full.csv',
            parse_dates=True,
            index_col=0).to_numpy(dtype=np.float64, copy=True)

        sd_result, st_result = ts.closeSimulation()

        pd.testing.assert_frame_equal(sd_result, ts._simulation_data)
        self.assertDictEqual(st_result, statistics_expected_result)
예제 #3
0
    def test_calculate_simulation_statistics_ten_simulation_rounds(self):
        # close values DataFrame
        cv_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)[['close']]

        # input_data DataFrame
        id_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)

        ts = TradingSimulation(input_data_index=id_df.index,
                               close_values=cv_df,
                               max_exposure=None,
                               short_exposure_factor=1.5)

        statistics_expected_result = {
            'number_of_trading_days': 10,
            'number_of_buy_signals': 4,
            'number_of_ignored_buy_signals': 1,
            'number_of_sell_signals': 3,
            'number_of_ignored_sell_signals': 2,
            'last_stock_value': 34.37,
            'last_exposure': 109.0,
            'last_open_long_positions': 2,
            'last_open_short_positions': 3,
            'last_portfolio_value': 209.0,
            'last_earnings': 309.0,
            'final_balance': 409.0
        }

        ts._simulation_data = pd.read_csv(
            './data/simulation_data_with_actions_ten_rounds.csv',
            parse_dates=True,
            index_col=0)

        ts._portfolio = pd.read_csv(
            './data/portfolio_simulation_data_ten_rounds.csv',
            parse_dates=True,
            index_col=0).to_numpy(dtype=np.float64, copy=True)

        ts._calculateSimulationStatistics()

        self.assertDictEqual(ts._statistics, statistics_expected_result)
예제 #4
0
    def test_close_open_positions_none_open_no_force_all_write(self):
        # close values DataFrame
        cv_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)[['close']]

        # input_data DataFrame
        id_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)

        ts = TradingSimulation(input_data_index=id_df.index,
                               close_values=cv_df,
                               max_exposure=None,
                               short_exposure_factor=1.5)

        ts._portfolio = pd.read_csv(
            './data/portfolio_simulation_data_none_open_ten_rounds.csv',
            parse_dates=True,
            index_col=0).to_numpy(dtype=np.float64, copy=True)

        portfolio_expected_result = pd.read_csv(
            './data/portfolio_simulation_data_none_open_ten_rounds.csv',
            parse_dates=True,
            index_col=0).to_numpy(dtype=np.float64, copy=True)

        ts._simulation_data['exposure'].iat[8] = 100.0
        ts._simulation_data['earnings'].iat[8] = 200.0

        earnings, closed_exposure = ts._closeOpenPositions(i_index=9)

        self.assertEqual(earnings, 0.0)

        self.assertEqual(closed_exposure, 0.0)

        np.testing.assert_equal(ts._simulation_data['exposure'].iat[9], 100.0)

        np.testing.assert_equal(ts._simulation_data['earnings'].iat[9], 200.0)

        np.testing.assert_equal(ts._portfolio, portfolio_expected_result)
예제 #5
0
    def test_calculate_portfolio_value(self):
        # close values DataFrame
        cv_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)[['close']]

        # input_data DataFrame
        id_df = pd.read_csv('./data/sample_data.csv',
                            parse_dates=True,
                            index_col=0)

        ts = TradingSimulation(input_data_index=id_df.index,
                               close_values=cv_df,
                               max_exposure=None,
                               short_exposure_factor=1.5)

        ts._portfolio = pd.read_csv(
            './data/portfolio_simulation_data_ten_rounds.csv',
            parse_dates=True,
            index_col=0).to_numpy(dtype=np.float64, copy=True)

        value = ts._calculatePortfolioValue(i_index=9)

        self.assertEqual(value, 34.37 * (2 - 3))