예제 #1
0
def build(target_dir):
    """ Compiles resnet18 with TVM"""
    deploy_lib = osp.join(target_dir, 'deploy_lib.o')
    if osp.exists(deploy_lib):
        return
    # download the pretrained resnet18 trained on imagenet1k dataset for
    # image classification task
    block = get_model('resnet18_v1', pretrained=True)

    sym, params = nnvm.frontend.from_mxnet(block)
    # add the softmax layer for prediction
    net = nnvm.sym.softmax(sym)
    # compile the model
    with nnvm.compiler.build_config(opt_level=opt_level):
        graph, lib, params = nnvm.compiler.build(
            net, target, shape={"data": data_shape}, params=params)
    # save the model artifacts
    lib.save(deploy_lib)
    cc.create_shared(osp.join(target_dir, "deploy_lib.so"),
                    [osp.join(target_dir, "deploy_lib.o")])

    with open(osp.join(target_dir, "deploy_graph.json"), "w") as fo:
        fo.write(graph.json())

    with open(osp.join(target_dir,"deploy_param.params"), "wb") as fo:
        fo.write(nnvm.compiler.save_param_dict(params))
예제 #2
0
 def check_system_lib():
     dev = tvm.cpu(0)
     if not tvm.testing.device_enabled("llvm"):
         print("Skip because llvm is not enabled")
         return
     temp = utils.tempdir()
     runtime = Runtime("cpp", {"system-lib": True})
     fadd1 = tvm.build(s, [A, B], "llvm", runtime=runtime, name="myadd1")
     fadd2 = tvm.build(s, [A, B], "llvm", runtime=runtime, name="myadd2")
     path1 = temp.relpath("myadd1.o")
     path2 = temp.relpath("myadd2.o")
     path_dso = temp.relpath("mylib.so")
     fadd1.save(path1)
     fadd2.save(path2)
     cc.create_shared(path_dso, [path1, path2])
     # Load dll, will trigger system library registration
     ctypes.CDLL(path_dso)
     # Load the system wide library
     mm = tvm.runtime.system_lib()
     a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), dev)
     b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), dev)
     mm["myadd1"](a, b)
     np.testing.assert_equal(b.numpy(), a.numpy() + 1)
     mm["myadd2"](a, b)
     np.testing.assert_equal(b.numpy(), a.numpy() + 1)
예제 #3
0
    def download_linked_module(file_name):
        """Load module from remote side."""
        # c++ compiler/linker
        cc = os.environ.get("CXX", "g++")

        # pylint: disable=import-outside-toplevel
        path = temp.relpath(file_name)

        if path.endswith(".o"):
            # Extra dependencies during runtime.
            from tvm.contrib import cc as _cc

            _cc.create_shared(path + ".so", path, cc=cc)
            path += ".so"
        elif path.endswith(".tar"):
            # Extra dependencies during runtime.
            from tvm.contrib import cc as _cc, tar as _tar

            tar_temp = utils.tempdir(custom_path=path.replace(".tar", ""))
            _tar.untar(path, tar_temp.temp_dir)
            files = [tar_temp.relpath(x) for x in tar_temp.listdir()]
            _cc.create_shared(path + ".so", files, cc=cc)
            path += ".so"
        elif path.endswith(".dylib") or path.endswith(".so"):
            pass
        else:
            raise RuntimeError("Do not know how to link %s" % file_name)
        logger.info("Send linked module %s to client", path)
        return bytearray(open(path, "rb").read())
예제 #4
0
def build(target_dir):
    """ Compiles resnet18 with TVM"""
    # Download the pretrained model in MxNet's format.
    block = get_model("resnet18_v1", pretrained=True)

    shape_dict = {"data": (1, 3, 224, 224)}
    mod, params = relay.frontend.from_mxnet(block, shape_dict)
    # Add softmax to do classification in last layer.
    func = mod["main"]
    func = relay.Function(func.params, relay.nn.softmax(func.body), None,
                          func.type_params, func.attrs)

    target = "llvm"
    with tvm.transform.PassContext(opt_level=3):
        graph, lib, params = relay.build(func, target, params=params)

    # save the model artifacts
    deploy_lib = osp.join(target_dir, "deploy_lib.o")
    lib.save(deploy_lib)
    cc.create_shared(osp.join(target_dir, "deploy_lib.so"),
                     [osp.join(target_dir, "deploy_lib.o")])

    with open(osp.join(target_dir, "deploy_graph.json"), "w") as fo:
        fo.write(graph)

    with open(osp.join(target_dir, "deploy_param.params"), "wb") as fo:
        fo.write(relay.save_param_dict(params))
예제 #5
0
    def reconfig_runtime(cfg_json):
        """Rebuild and reload runtime with new configuration.

        Parameters
        ----------
        cfg_json : str
            JSON string used for configurations.
        """
        if runtime_dll:
            raise RuntimeError("Can only reconfig in the beginning of session...")
        env = get_env()
        cfg = json.loads(cfg_json)
        cfg["TARGET"] = env.TARGET
        pkg = PkgConfig(cfg, proj_root)
        # check if the configuration is already the same
        if os.path.isfile(cfg_path):
            old_cfg = json.loads(open(cfg_path, "r").read())
            if pkg.same_config(old_cfg):
                logging.info("Skip reconfig_runtime due to same config.")
                return
        cflags = ["-O2", "-std=c++11"]
        cflags += pkg.cflags
        ldflags = pkg.ldflags
        lib_name = dll_path
        source = pkg.lib_source
        logging.info("Rebuild runtime:\n output=%s,\n cflags=%s,\n source=%s,\n ldflags=%s",
                     dll_path, '\n\t'.join(cflags), '\n\t'.join(source), '\n\t'.join(ldflags))
        cc.create_shared(lib_name, source, cflags + ldflags)
        with open(cfg_path, "w") as outputfile:
            outputfile.write(pkg.cfg_json)
예제 #6
0
    def reconfig_runtime(cfg_json):
        """Rebuild and reload runtime with new configuration.

        Parameters
        ----------
        cfg_json : str
            JSON string used for configurations.
        """
        if runtime_dll:
            raise RuntimeError(
                "Can only reconfig in the beginning of session...")
        env = get_env()
        cfg = json.loads(cfg_json)
        cfg["TARGET"] = env.TARGET
        pkg = PkgConfig(cfg, proj_root)
        # check if the configuration is already the same
        if os.path.isfile(cfg_path):
            old_cfg = json.loads(open(cfg_path, "r").read())
            if pkg.same_config(old_cfg):
                logging.info("Skip reconfig_runtime due to same config.")
                return
        cflags = ["-O2", "-std=c++11"]
        cflags += pkg.cflags
        ldflags = pkg.ldflags
        lib_name = dll_path
        source = pkg.lib_source
        logging.info(
            "Rebuild runtime:\n output=%s,\n cflags=%s,\n source=%s,\n ldflags=%s",
            dll_path, '\n\t'.join(cflags), '\n\t'.join(source),
            '\n\t'.join(ldflags))
        cc.create_shared(lib_name, source, cflags + ldflags)
        with open(cfg_path, "w") as outputfile:
            outputfile.write(pkg.cfg_json)
예제 #7
0
파일: test_add_cpu.py 프로젝트: bddppq/tvm
def test_add(target_dir):
    n = tvm.var("n")
    A = tvm.placeholder((n,), name='A')
    B = tvm.placeholder((n,), name='B')
    C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")
    s = tvm.create_schedule(C.op)
    fadd = tvm.build(s, [A, B, C], "llvm", target_host="llvm", name="myadd")

    fadd.save(os.path.join(target_dir, "add_cpu.o"))
    cc.create_shared(os.path.join(target_dir, "add_cpu.so"),
            [os.path.join(target_dir, "add_cpu.o")])
예제 #8
0
def main():
    n = tvm.var('n')
    A = tvm.placeholder((n,), name='A')
    B = tvm.placeholder((n,), name='B')
    C = tvm.compute(A.shape, lambda *i: A(*i) + B(*i), name='C')
    s = tvm.create_schedule(C.op)
    s[C].parallel(s[C].op.axis[0])
    print(tvm.lower(s, [A, B, C], simple_mode=True))
    obj_file = osp.join(sys.argv[1], 'test.o')
    tvm.build(s, [A, B, C], 'llvm').save(obj_file)
    cc.create_shared(osp.join(sys.argv[1], 'test.so'), [obj_file])
예제 #9
0
def main():
    n = te.var("n")
    A = te.placeholder((n,), name="A")
    B = te.placeholder((n,), name="B")
    C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C")
    s = tvm.te.create_schedule(C.op)
    s[C].parallel(s[C].op.axis[0])
    print(tvm.lower(s, [A, B, C], simple_mode=True))
    obj_file = osp.join(sys.argv[1], "test.o")
    tvm.build(s, [A, B, C], "llvm").save(obj_file)
    cc.create_shared(osp.join(sys.argv[1], "test.so"), [obj_file])
예제 #10
0
파일: test.py 프로젝트: denis0x0D/ml_models
 def my_mul():
     n = tvm.var("n")
     A = tvm.placeholder((n, n), name='A', dtype="float32")
     B = tvm.placeholder((n, n), name='B', dtype="float32")
     C = tvm.compute(A.shape, lambda *i: A(*i) * B(*i), name='C')
     s = tvm.create_schedule(C.op)
     module = tvm.build(s, [A, B, C], "llvm", "llvm")
     temp = util.tempdir()
     module.save(temp.relpath("mymul.o"))
     cc.create_shared("mymul.so", [temp.relpath("mymul.o")])
     print("create mymul")
예제 #11
0
def test_add(target_dir):
    n = tvm.var("n")
    A = tvm.placeholder((n, ), name='A')
    B = tvm.placeholder((n, ), name='B')
    C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")
    s = tvm.create_schedule(C.op)
    fadd = tvm.build(s, [A, B, C], "llvm", target_host="llvm", name="myadd")

    fadd.save(os.path.join(target_dir, "add_cpu.o"))
    cc.create_shared(os.path.join(target_dir, "add_cpu.so"),
                     [os.path.join(target_dir, "add_cpu.o")])
예제 #12
0
def save_tvm_model(name, graph, lib, params):
    deploy_lib = osp.join(target_dir, name + '.o')
    deploy_so = osp.join(target_dir, name + '.so')
    lib.save(deploy_lib)
    cc.create_shared(deploy_so, [deploy_lib])

    with open(osp.join(target_dir, name + ".json"), "w") as fo:
        fo.write(graph)

    with open(osp.join(target_dir, name + ".params"), "wb") as fo:
        fo.write(relay.save_param_dict(params))
예제 #13
0
파일: module.py 프로젝트: Manikant92/tvm
def load_module(path, fmt=""):
    """Load module from file.

    Parameters
    ----------
    path : str
        The path to the module file.

    fmt : str, optional
        The format of the file, if not specified
        it will be inferred from suffix of the file.

    Returns
    -------
    module : runtime.Module
        The loaded module

    Note
    ----
    This function will automatically call
    cc.create_shared if the path is in format .o or .tar
    """
    if os.stat(path).st_size == 0:
        logging.info(
            "The lib generated by the NNVM compiler does not contain optimized "
            "functions for any operators. This usually happens when an external "
            "accelerator, e.g. TensorRT, is employed along with TVM to compile "
            "the model, and all the operators in the model are supported by the "
            "external accelerator at runtime. Therefore, the NNVM compiler skipped "
            "optimizing them at the compile time. The TVM runtime "
            "will create an empty Module as a dummy module.")
        return _ffi_api.CreateEmptyModule()

    # High level handling for .o and .tar file.
    # We support this to be consistent with RPC module load.
    if path.endswith(".o"):
        # Extra dependencies during runtime.
        from tvm.contrib import cc as _cc
        _cc.create_shared(path + ".so", path)
        path += ".so"
    elif path.endswith(".tar"):
        # Extra dependencies during runtime.
        from tvm.contrib import cc as _cc, util as _util, tar as _tar
        tar_temp = _util.tempdir(custom_path=path.replace('.tar', ''))
        _tar.untar(path, tar_temp.temp_dir)
        files = [tar_temp.relpath(x) for x in tar_temp.listdir()]
        _cc.create_shared(path + ".so", files)
        path += ".so"
    # TODO(weberlo): we should probably use a more distinctive suffix for uTVM object files
    elif path.endswith(".obj"):
        fmt = "micro_dev"
    # Redirect to the load API
    return _ffi_api.ModuleLoadFromFile(path, fmt)
예제 #14
0
파일: module.py 프로젝트: vinceab/tvm
def load_module(path, fmt=""):
    """Load module from file.

    Parameters
    ----------
    path : str
        The path to the module file.

    fmt : str, optional
        The format of the file, if not specified
        it will be inferred from suffix of the file.

    Returns
    -------
    module : runtime.Module
        The loaded module

    Note
    ----
    This function will automatically call
    cc.create_shared if the path is in format .o or .tar
    """
    if os.path.isfile(path):
        path = os.path.realpath(path)
    else:
        raise ValueError("cannot find file %s" % path)

    # c++ compiler/linker
    cc = os.environ.get("CXX", "g++")

    # High level handling for .o and .tar file.
    # We support this to be consistent with RPC module load.
    if path.endswith(".o"):
        # Extra dependencies during runtime.
        from tvm.contrib import cc as _cc

        _cc.create_shared(path + ".so", path, cc=cc)
        path += ".so"
    elif path.endswith(".tar"):
        # Extra dependencies during runtime.
        from tvm.contrib import cc as _cc, utils as _utils, tar as _tar

        tar_temp = _utils.tempdir(custom_path=path.replace(".tar", ""))
        _tar.untar(path, tar_temp.temp_dir)
        files = [tar_temp.relpath(x) for x in tar_temp.listdir()]
        _cc.create_shared(path + ".so", files, cc=cc)
        path += ".so"
    # TODO(weberlo): we should probably use a more distinctive suffix for microTVM object files
    elif path.endswith(".obj"):
        fmt = "micro_dev"
    # Redirect to the load API
    return _ffi_api.ModuleLoadFromFile(path, fmt)
예제 #15
0
def save_operator(operator, name):
    temp = utils.tempdir()
    fadd = operator
    fadd.save(temp.relpath(name+".o"))
    if tgt.kind.name == "cuda":
        fadd.imported_modules[0].save(temp.relpath(name+".ptx"))
    if tgt.kind.name == "rocm":
        fadd.imported_modules[0].save(temp.relpath(name+".hsaco"))
    if tgt.kind.name.startswith("opencl"):
        fadd.imported_modules[0].save(temp.relpath(name+".cl"))
    cc.create_shared(temp.relpath(name+".so"), [temp.relpath(name+".o")])
    print(temp.listdir())
    return temp.listdir()
예제 #16
0
def test_dso_module_load():
    if not tvm.testing.device_enabled("llvm"):
        return
    dtype = "int64"
    temp = utils.tempdir()

    def save_object(names):
        n = te.size_var("n")
        Ab = tvm.tir.decl_buffer((n,), dtype)
        i = te.var("i")
        # for i in 0 to n-1:
        stmt = tvm.tir.For(
            i,
            0,
            n - 1,
            tvm.tir.ForKind.SERIAL,
            tvm.tir.BufferStore(Ab, tvm.tir.BufferLoad(Ab, [i]) + 1, [i + 1]),
        )
        mod = tvm.IRModule.from_expr(
            tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "main")
        )
        m = tvm.driver.build(mod, target="llvm")
        for name in names:
            m.save(name)

    path_obj = temp.relpath("test.o")
    path_ll = temp.relpath("test.ll")
    path_bc = temp.relpath("test.bc")
    path_dso = temp.relpath("test.so")
    save_object([path_obj, path_ll, path_bc])
    cc.create_shared(path_dso, [path_obj])

    f1 = tvm.runtime.load_module(path_dso)
    f2 = tvm.runtime.load_module(path_ll)
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f1(a)
    np.testing.assert_equal(a.numpy(), np.arange(a.shape[0]))
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f2(a)
    np.testing.assert_equal(a.numpy(), np.arange(a.shape[0]))

    path_runtime_py = temp.relpath("runtime.py")
    with open(path_runtime_py, "w") as fo:
        fo.write(runtime_py)

    proc = subprocess.run(
        [sys.executable, path_runtime_py, path_dso, dtype],
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
    )
    assert proc.returncode == 0, f"{proc.args} exited with {proc.returncode}: {proc.stdout}"
예제 #17
0
def link_shared(so_name, objs, **kwargs):
    """Link shared library on Hexagon using the registered Hexagon linker.

    Parameters
    ----------
    so_name : str
        Name of the shared library file.
    objs : list[str,StringImm]
    kwargs : additional arguments:
        'verbose' - print additional information

    Returns
    -------
    ret_val : int
        This function returns 0 at the moment.
    """
    # The list of object files can be passed as built-in Python strings,
    # or as tvm.tir.StringImm's.
    def to_str(s):
        if isinstance(s, tvm.tir.StringImm):
            return s.value
        assert isinstance(s, str), 'argument "' + str(s) + '" should be a string or StrImm'
        return s
    objs = [to_str(s) for s in objs]

    linker = tvm.get_global_func('tvm.contrib.hexagon.hexagon_link')()
    if kwargs.get('verbose'):
        print('tvm.contrib.hexagon.link_shared:')
        print('  Using linker:', linker)
        print('  Library name:', so_name)
        print('  Object files:', objs)
    if not os.access(linker, os.X_OK):
        message = 'The linker "' + linker + '" does not exist or is not executable.'
        if not os.environ.get('HEXAGON_TOOLCHAIN'):
            message += ' The environment variable HEXAGON_TOOLCHAIN is unset. Please export ' + \
                'HEXAGON_TOOLCHAIN in your environment, so that ${HEXAGON_TOOLCHAIN}/bin/' + \
                'hexagon-link exists.'
        else:
            message += ' Please verify the value of the HEXAGON_LINKER environment variable ' + \
                '(currently set to "' + hexagon_toolchain_root + '").'
        raise Exception(message)

    libpath = os.path.join(
        hexagon_toolchain_root, 'target', 'hexagon', 'lib', 'v66', 'G0')
    cc.create_shared(
        so_name, objs,
        # pylint: disable=bad-whitespace
        options = ['-Bdynamic', '-shared', '-export-dynamic',
                   os.path.join(libpath, 'pic', 'libgcc.so')],
        cc = linker)
    return 0
def make_binary():
    prog = "int a = 7; \
            int main() { \
                int b = 5; \
                return 0; \
            }"
    tmp_dir = util.tempdir()
    tmp_source = tmp_dir.relpath("source.c")
    tmp_obj = tmp_dir.relpath("obj.obj")
    with open(tmp_source, "w") as f:
        f.write(prog)
    cc.create_shared(tmp_obj, tmp_source, [],
                     cc="{}gcc".format(TOOLCHAIN_PREFIX))
    prog_bin = bytearray(open(tmp_obj, "rb").read())
    return prog_bin
예제 #19
0
def test_dso_module_load():
    if not tvm.testing.device_enabled("llvm"):
        return
    dtype = "int64"
    temp = utils.tempdir()

    def save_object(names):
        n = te.size_var("n")
        Ab = tvm.tir.decl_buffer((n, ), dtype)
        i = te.var("i")
        # for i in 0 to n-1:
        stmt = tvm.tir.For(
            i,
            0,
            n - 1,
            tvm.tir.ForKind.SERIAL,
            tvm.tir.Store(Ab.data,
                          tvm.tir.Load(dtype, Ab.data, i) + 1, i + 1),
        )
        mod = tvm.IRModule.from_expr(
            tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "main"))
        m = tvm.driver.build(mod, target="llvm")
        for name in names:
            m.save(name)

    path_obj = temp.relpath("test.o")
    path_ll = temp.relpath("test.ll")
    path_bc = temp.relpath("test.bc")
    path_dso = temp.relpath("test.so")
    save_object([path_obj, path_ll, path_bc])
    cc.create_shared(path_dso, [path_obj])

    f1 = tvm.runtime.load_module(path_dso)
    f2 = tvm.runtime.load_module(path_ll)
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f1(a)
    np.testing.assert_equal(a.asnumpy(), np.arange(a.shape[0]))
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f2(a)
    np.testing.assert_equal(a.asnumpy(), np.arange(a.shape[0]))

    path_runtime_py = temp.relpath("runtime.py")
    with open(path_runtime_py, "w") as fo:
        fo.write(runtime_py)

    subprocess.check_call("python3 %s %s %s" %
                          (path_runtime_py, path_dso, dtype),
                          shell=True)
예제 #20
0
파일: test_add_gpu.py 프로젝트: gwli/tvm
def test_add(target_dir):
    n = tvm.var("n")
    A = tvm.placeholder((n,), name='A')
    B = tvm.placeholder((n,), name='B')
    C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")

    s = tvm.create_schedule(C.op)

    bx, tx = s[C].split(C.op.axis[0], factor=64)
    s[C].bind(bx, tvm.thread_axis("blockIdx.x"))
    s[C].bind(tx, tvm.thread_axis("threadIdx.x"))
    fadd_cuda = tvm.build(s, [A, B, C], "cuda", target_host="llvm", name="myadd")

    fadd_cuda.save(os.path.join(target_dir, "add_gpu.o"))
    fadd_cuda.imported_modules[0].save(os.path.join(target_dir, "add_gpu.ptx"))
    cc.create_shared(os.path.join(target_dir, "add_gpu.so"),
            [os.path.join(target_dir, "add_gpu.o")])
예제 #21
0
def main(target, out_dir):
    n = te.var("n")
    A = te.placeholder((n,), name="A")
    B = te.placeholder((n,), name="B")
    C = te.compute(A.shape, lambda i: A[i] + B[i], name="C")
    s = te.create_schedule(C.op)

    if target == "cuda":
        bx, tx = s[C].split(C.op.axis[0], factor=64)
        s[C].bind(bx, te.thread_axis("blockIdx.x"))
        s[C].bind(tx, te.thread_axis("threadIdx.x"))

    fadd = tvm.build(s, [A, B, C], target, target_host="llvm", name="myadd")
    fadd.save(osp.join(out_dir, "test_add.o"))
    if target == "cuda":
        fadd.imported_modules[0].save(osp.join(out_dir, "test_add.ptx"))
    cc.create_shared(osp.join(out_dir, "test_add.so"), [osp.join(out_dir, "test_add.o")])
예제 #22
0
def test_dso_module_load():
    if not tvm.runtime.enabled("llvm"):
        return
    dtype = 'int64'
    temp = util.tempdir()

    def save_object(names):
        n = tvm.size_var('n')
        Ab = tvm.decl_buffer((n, ), dtype)
        i = tvm.var('i')
        # for i in 0 to n-1:
        stmt = tvm.tir.For(
            i, 0, n - 1, 0, 0,
            tvm.tir.Store(Ab.data,
                           tvm.tir.Load(dtype, Ab.data, i) + 1,
                           i + 1))
        fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True)
        fapi = tvm.ir_pass.LowerTVMBuiltin(fapi)
        m = tvm.target.codegen.build_module(fapi, "llvm")
        for name in names:
            m.save(name)

    path_obj = temp.relpath("test.o")
    path_ll = temp.relpath("test.ll")
    path_bc = temp.relpath("test.bc")
    path_dso = temp.relpath("test.so")
    save_object([path_obj, path_ll, path_bc])
    cc.create_shared(path_dso, [path_obj])

    f1 = tvm.runtime.load_module(path_dso)
    f2 = tvm.runtime.load_module(path_ll)
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f1(a)
    np.testing.assert_equal(a.asnumpy(), np.arange(a.shape[0]))
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f2(a)
    np.testing.assert_equal(a.asnumpy(), np.arange(a.shape[0]))

    path_runtime_py = temp.relpath("runtime.py")
    with open(path_runtime_py, "w") as fo:
        fo.write(runtime_py)

    subprocess.check_call(
        "python3 %s %s %s" % (path_runtime_py, path_dso, dtype),
        shell=True)
예제 #23
0
def test_dso_module_load():
    if not tvm.module.enabled("llvm"):
        return
    dtype = 'int64'
    temp = util.tempdir()

    def save_object(names):
        n = tvm.var('n')
        Ab = tvm.decl_buffer((n, ), dtype)
        i = tvm.var('i')
        # for i in 0 to n-1:
        stmt = tvm.make.For(
            i, 0, n - 1, 0, 0,
            tvm.make.Store(Ab.data,
                           tvm.make.Load(dtype, Ab.data, i) + 1,
                           i + 1))
        fapi = tvm.ir_pass.MakeAPI(stmt, "ramp", [Ab], 0, True)
        fapi = tvm.ir_pass.LowerTVMBuiltin(fapi)
        m = tvm.codegen.build_module(fapi, "llvm")
        for name in names:
            m.save(name)

    path_obj = temp.relpath("test.o")
    path_ll = temp.relpath("test.ll")
    path_bc = temp.relpath("test.bc")
    path_dso = temp.relpath("test.so")
    save_object([path_obj, path_ll, path_bc])
    cc.create_shared(path_dso, [path_obj])

    f1 = tvm.module.load(path_dso)
    f2 = tvm.module.load(path_ll)
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f1(a)
    np.testing.assert_equal(a.asnumpy(), np.arange(a.shape[0]))
    a = tvm.nd.array(np.zeros(10, dtype=dtype))
    f2(a)
    np.testing.assert_equal(a.asnumpy(), np.arange(a.shape[0]))

    path_runtime_py = temp.relpath("runtime.py")
    with open(path_runtime_py, "w") as fo:
        fo.write(runtime_py)

    subprocess.check_call(
        "python %s %s %s" % (path_runtime_py, path_dso, dtype),
        shell=True)
예제 #24
0
파일: test.py 프로젝트: denis0x0D/ml_models
    def check_code_gen(device):
        n = tvm.var("n")
        A = tvm.placeholder((n, n), name='A', dtype="float32")
        B = tvm.placeholder((n, n), name='B', dtype="float32")
        C = tvm.compute(A.shape, lambda *i: A(*i) + B(*i), name='C')
        s = tvm.create_schedule(C.op)

        bx, tx = s[C].split(C.op.axis[0], factor=64)
        s[C].bind(bx, tvm.thread_axis("blockIdx.x"))
        s[C].bind(tx, tvm.thread_axis("threadIdx.x"))

        #print (tvm.lower(s, [A, B, C], simple_mode=True))
        module = tvm.build(s, [A, B, C], device, target_host="llvm")
        #print ("Device code %s" %device)
        #print (module.imported_modules[0].get_source())
        #print (module.get_source ("asm"))

        temp = util.tempdir()
        module.save(temp.relpath("myadd.o"))
        # Save device code
        suffix = "vulkan"
        if device == "opencl":
            suffix = "cl"
        module.imported_modules[0].save(temp.relpath("myadd.%s" % suffix))
        # Create shared library
        cc.create_shared(temp.relpath("myadd.so"), [temp.relpath("myadd.o")])

        myadd = tvm.module.load(temp.relpath("myadd.so"))
        # Import "deviced" code
        myadd_device = tvm.module.load(temp.relpath("myadd.%s" % suffix))
        # Import module
        myadd.import_module(myadd_device)

        ctx = tvm.context(device, 0)
        n = 1024
        a = tvm.nd.array(np.random.uniform(size=(n, n)).astype(A.dtype), ctx)
        b = tvm.nd.array(np.random.uniform(size=(n, n)).astype(A.dtype), ctx)
        c = tvm.nd.array(np.random.uniform(size=(n, n)).astype(A.dtype), ctx)
        t0 = time.time()
        myadd(a, b, c)
        t1 = time.time()
        print(device)
        print("GPU time: %s" % (t1 - t0))
예제 #25
0
def build():
    tgt_host = "llvm"
    tgt = "llvm"

    sche = te.create_schedule([C.op])
    print(tvm.lower(sche, [A, B, C], simple_mode=True))

    fadd = tvm.build(sche, [A, B, C], tgt, target_host=tgt_host, name="add")

    pdb.set_trace()

    ######################################################################
    # Save Compiled Module
    # --------------------
    from tvm.contrib import cc
    from tvm.contrib import utils

    fadd.save("deploy.o")
    cc.create_shared("deploy.so", ["deploy.o"])
예제 #26
0
def main(target, out_dir):
    n = te.var('n')
    A = te.placeholder((n, ), name='A')
    B = te.placeholder((n, ), name='B')
    C = te.compute(A.shape, lambda i: A[i] + B[i], name='C')
    s = te.create_schedule(C.op)

    if target == 'cuda':
        bx, tx = s[C].split(C.op.axis[0], factor=64)
        s[C].bind(bx, te.thread_axis('blockIdx.x'))
        s[C].bind(tx, te.thread_axis('threadIdx.x'))

    fadd = tvm.build(s, [A, B, C], target, target_host='llvm', name='myadd')

    fadd.save(osp.join(out_dir, 'test_add.o'))
    if target == 'cuda':
        fadd.imported_modules[0].save(osp.join(out_dir, 'test_add.ptx'))
    cc.create_shared(osp.join(out_dir, 'test_add.so'),
                     [osp.join(out_dir, 'test_add.o')])
예제 #27
0
def load_module(path, fmt=""):
    """Load module from file.

    Parameters
    ----------
    path : str
        The path to the module file.

    fmt : str, optional
        The format of the file, if not specified
        it will be inferred from suffix of the file.

    Returns
    -------
    module : runtime.Module
        The loaded module

    Note
    ----
    This function will automatically call
    cc.create_shared if the path is in format .o or .tar
    """
    # High level handling for .o and .tar file.
    # We support this to be consistent with RPC module load.
    if path.endswith(".o"):
        # Extra dependencies during runtime.
        from tvm.contrib import cc as _cc
        _cc.create_shared(path + ".so", path)
        path += ".so"
    elif path.endswith(".tar"):
        # Extra dependencies during runtime.
        from tvm.contrib import cc as _cc, util as _util, tar as _tar
        tar_temp = _util.tempdir(custom_path=path.replace('.tar', ''))
        _tar.untar(path, tar_temp.temp_dir)
        files = [tar_temp.relpath(x) for x in tar_temp.listdir()]
        _cc.create_shared(path + ".so", files)
        path += ".so"
    # TODO(weberlo): we should probably use a more distinctive suffix for uTVM object files
    elif path.endswith(".obj"):
        fmt = "micro_dev"
    # Redirect to the load API
    return _ffi_api.ModuleLoadFromFile(path, fmt)
예제 #28
0
def test_add(target_dir):
    n = tvm.var("n")
    A = tvm.placeholder((n, ), name='A')
    B = tvm.placeholder((n, ), name='B')
    C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")

    s = tvm.create_schedule(C.op)

    bx, tx = s[C].split(C.op.axis[0], factor=64)
    s[C].bind(bx, tvm.thread_axis("blockIdx.x"))
    s[C].bind(tx, tvm.thread_axis("threadIdx.x"))
    fadd_cuda = tvm.build(s, [A, B, C],
                          "cuda",
                          target_host="llvm",
                          name="myadd")

    fadd_cuda.save(os.path.join(target_dir, "add_gpu.o"))
    fadd_cuda.imported_modules[0].save(os.path.join(target_dir, "add_gpu.ptx"))
    cc.create_shared(os.path.join(target_dir, "add_gpu.so"),
                     [os.path.join(target_dir, "add_gpu.o")])
예제 #29
0
def test_add(target_dir):
    if not tvm.runtime.enabled("cuda"):
        print("skip %s because cuda is not enabled..." % __file__)
        return
    n = te.var("n")
    A = te.placeholder((n,), name="A")
    B = te.placeholder((n,), name="B")
    C = te.compute(A.shape, lambda i: A[i] + B[i], name="C")

    s = te.create_schedule(C.op)

    bx, tx = s[C].split(C.op.axis[0], factor=64)
    s[C].bind(bx, te.thread_axis("blockIdx.x"))
    s[C].bind(tx, te.thread_axis("threadIdx.x"))
    fadd_cuda = tvm.build(s, [A, B, C], "cuda", target_host="llvm", name="myadd")

    fadd_cuda.save(os.path.join(target_dir, "add_gpu.o"))
    fadd_cuda.imported_modules[0].save(os.path.join(target_dir, "add_gpu.ptx"))
    cc.create_shared(
        os.path.join(target_dir, "add_gpu.so"), [os.path.join(target_dir, "add_gpu.o")]
    )
예제 #30
0
def build(target_dir):
	""" Compiles resnet18 with TVM"""

	# download the pretrained resnet18 trained on imagenet1k dataset for
	# image classification task
	block = get_model('resnet18_v1', pretrained=True)
	
	sym, params = nnvm.frontend.from_mxnet(block)
	# add the softmax layer for prediction
	net = nnvm.sym.softmax(sym)
	# compile the model
	with nnvm.compiler.build_config(opt_level=opt_level):
		graph, lib, params = nnvm.compiler.build(
			net, target, shape={"data": data_shape}, params=params)
	# same the model artifacts
	lib.save(os.path.join(target_dir, "deploy_lib.o"))
	cc.create_shared(os.path.join(target_dir, "deploy_lib.so"),
    				[os.path.join(target_dir, "deploy_lib.o")])
	
	with open(os.path.join(target_dir, "deploy_graph.json"), "w") as fo:
	    fo.write(graph.json())
	with open(os.path.join(target_dir,"deploy_param.params"), "wb") as fo:
	    fo.write(nnvm.compiler.save_param_dict(params))
	# download an image and imagenet1k class labels for test
	img_name = 'cat.png'
	synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
                      '4d0b62f3d01426887599d4f7ede23ee5/raw/',
                      '596b27d23537e5a1b5751d2b0481ef172f58b539/',
                      'imagenet1000_clsid_to_human.txt'])
	synset_name = 'synset.txt'
	download('https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true', img_name)
	download(synset_url, synset_name)

	with open(synset_name) as fin:
		synset = eval(fin.read())

	with open("synset.csv", "w") as fout:
		w = csv.writer(fout)
		w.writerows(synset.items())
예제 #31
0
def build(target_dir):
    """ Compiles resnet18 with TVM"""
    deploy_lib = osp.join(target_dir, "deploy_lib.o")
    if osp.exists(deploy_lib):
        return

    if args.pretrained:
        # needs mxnet installed
        from mxnet.gluon.model_zoo.vision import get_model

        # if `--pretrained` is enabled, it downloads a pretrained
        # resnet18 trained on imagenet1k dataset for image classification task
        block = get_model("resnet18_v1", pretrained=True)
        net, params = relay.frontend.from_mxnet(block, {"data": data_shape})
        # we want a probability so add a softmax operator
        func = net["main"]
        net = relay.Function(func.params, relay.nn.softmax(func.body), None,
                             func.type_params, func.attrs)
    else:
        # use random weights from relay.testing
        net, params = relay.testing.resnet.get_workload(
            num_layers=18, batch_size=batch_size, image_shape=image_shape)

    # compile the model
    with tvm.transform.PassContext(opt_level=opt_level):
        graph, lib, params = relay.build_module.build(net,
                                                      target,
                                                      params=params)

    # save the model artifacts
    lib.save(deploy_lib)
    cc.create_shared(osp.join(target_dir, "deploy_lib.so"),
                     [osp.join(target_dir, "deploy_lib.o")])

    with open(osp.join(target_dir, "deploy_graph.json"), "w") as fo:
        fo.write(graph)

    with open(osp.join(target_dir, "deploy_param.params"), "wb") as fo:
        fo.write(relay.save_param_dict(params))
예제 #32
0
파일: test.py 프로젝트: denis0x0D/ml_models
def simple_llvm_save_module():
    n = tvm.var("n")
    A = tvm.placeholder((n, n), name='A', dtype="float32")
    B = tvm.placeholder((n, n), name='B', dtype="float32")
    C = tvm.compute(A.shape, lambda *i: A(*i) + B(*i), name='C')
    s = tvm.create_schedule(C.op)
    module = tvm.build(s, [A, B, C], "llvm", "llvm")

    temp = util.tempdir()
    module.save(temp.relpath("myadd.o"))
    cc.create_shared(temp.relpath("myadd.so"), [temp.relpath("myadd.o")])

    ctx = tvm.context("llvm", 0)
    n = 1024
    a = tvm.nd.array(np.random.uniform(size=(n, n)).astype(A.dtype), ctx)
    b = tvm.nd.array(np.random.uniform(size=(n, n)).astype(A.dtype), ctx)
    c = tvm.nd.array(np.random.uniform(size=(n, n)).astype(A.dtype), ctx)

    myadd = tvm.module.load(temp.relpath("myadd.so"))
    t0 = time.time()
    myadd(a, b, c)
    t1 = time.time()
    print("CPU time: %s" % (t1 - t0))
예제 #33
0
 def check_system_lib():
     ctx = tvm.cpu(0)
     if not tvm.module.enabled("llvm"):
         print("Skip because llvm is not enabled" )
         return
     temp = util.tempdir()
     fadd1 = tvm.build(s, [A, B], "llvm -system-lib", name="myadd1")
     fadd2 = tvm.build(s, [A, B], "llvm -system-lib", name="myadd2")
     path1 = temp.relpath("myadd1.o")
     path2 = temp.relpath("myadd2.o")
     path_dso = temp.relpath("mylib.so")
     fadd1.save(path1)
     fadd2.save(path2)
     cc.create_shared(path_dso, [path1, path2])
     # Load dll, will trigger system library registration
     dll = ctypes.CDLL(path_dso)
     # Load the system wide library
     mm = tvm.module.system_lib()
     a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), ctx)
     b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), ctx)
     mm['myadd1'](a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
     mm['myadd2'](a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
예제 #34
0
 def check_system_lib():
     ctx = tvm.cpu(0)
     if not tvm.runtime.enabled("llvm"):
         print("Skip because llvm is not enabled" )
         return
     temp = util.tempdir()
     fadd1 = tvm.build(s, [A, B], "llvm -system-lib", name="myadd1")
     fadd2 = tvm.build(s, [A, B], "llvm -system-lib", name="myadd2")
     path1 = temp.relpath("myadd1.o")
     path2 = temp.relpath("myadd2.o")
     path_dso = temp.relpath("mylib.so")
     fadd1.save(path1)
     fadd2.save(path2)
     cc.create_shared(path_dso, [path1, path2])
     # Load dll, will trigger system library registration
     dll = ctypes.CDLL(path_dso)
     # Load the system wide library
     mm = tvm.runtime.system_lib()
     a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), ctx)
     b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), ctx)
     mm['myadd1'](a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
     mm['myadd2'](a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
예제 #35
0
 def check_llvm():
     ctx = tvm.cpu(0)
     if not tvm.runtime.enabled("llvm"):
         print("Skip because llvm is not enabled" )
         return
     temp = util.tempdir()
     fadd1 = tvm.build(s, [A, B], "llvm", name="myadd1")
     fadd2 = tvm.build(s, [A, B], "llvm", name="myadd2")
     path1 = temp.relpath("myadd1.o")
     path2 = temp.relpath("myadd2.o")
     path_dso = temp.relpath("mylib.so")
     fadd1.save(path1)
     fadd2.save(path2)
     # create shared library with multiple functions
     cc.create_shared(path_dso, [path1, path2])
     m = tvm.runtime.load_module(path_dso)
     fadd1 = m['myadd1']
     fadd2 = m['myadd2']
     a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), ctx)
     b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), ctx)
     fadd1(a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
     fadd2(a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
예제 #36
0
 def check_llvm():
     ctx = tvm.cpu(0)
     if not tvm.module.enabled("llvm"):
         print("Skip because llvm is not enabled" )
         return
     temp = util.tempdir()
     fadd1 = tvm.build(s, [A, B], "llvm", name="myadd1")
     fadd2 = tvm.build(s, [A, B], "llvm", name="myadd2")
     path1 = temp.relpath("myadd1.o")
     path2 = temp.relpath("myadd2.o")
     path_dso = temp.relpath("mylib.so")
     fadd1.save(path1)
     fadd2.save(path2)
     # create shared library with multiple functions
     cc.create_shared(path_dso, [path1, path2])
     m = tvm.module.load(path_dso)
     fadd1 = m['myadd1']
     fadd2 = m['myadd2']
     a = tvm.nd.array(np.random.uniform(size=nn).astype(A.dtype), ctx)
     b = tvm.nd.array(np.zeros(nn, dtype=A.dtype), ctx)
     fadd1(a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
     fadd2(a, b)
     np.testing.assert_equal(b.asnumpy(), a.asnumpy() + 1)
예제 #37
0
# file and load them back later. This is called ahead of time compilation.
#
# The following code first does the following step:
#
# - It saves the compiled host module into an object file.
# - Then it saves the device module into a ptx file.
# - cc.create_shared calls a env compiler(gcc) to create a shared library
#
from tvm.contrib import cc
from tvm.contrib import util

temp = util.tempdir()
fadd.save(temp.relpath("myadd.o"))
if tgt == "cuda":
    fadd.imported_modules[0].save(temp.relpath("myadd.ptx"))
cc.create_shared(temp.relpath("myadd.so"), [temp.relpath("myadd.o")])
print(temp.listdir())

######################################################################
# .. note:: Module Storage Format
#
#   The CPU(host) module is directly saved as a shared library(so).
#   There can be multiple customed format on the device code.
#   In our example, device code is stored in ptx, as well as a meta
#   data json file. They can be loaded and linked seperatedly via import.
#

######################################################################
# Load Compiled Module
# --------------------
# We can load the compiled module from the file system and run the code.
예제 #38
0
파일: deploy.py 프로젝트: bddppq/tvm
tgt_host="llvm"
tgt="llvm"

######################################################################
# Describe the Computation
# ------------------------
n = tvm.var("n")
A = tvm.placeholder((n,), name='A')
B = tvm.placeholder((n,), name='B')
C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")

######################################################################
# Schedule the Computation
# ------------------------
s = tvm.create_schedule(C.op)

######################################################################
# Compilation
# -----------
fadd = tvm.build(s, [A, B, C], tgt, target_host=tgt_host, name="myadd")

######################################################################
# Save Compiled Module
# --------------------
from tvm.contrib import cc
from tvm.contrib import util

fadd.save("deploy.o")
cc.create_shared("deploy.so", ["deploy.o"])