예제 #1
0
def test_ref():
    d = relay.Var("d")
    r = relay.Var("r")
    x = relay.Var("x")
    body = relay.RefRead(r)
    body = Let(x, RefWrite(r, RefRead(r) * RefRead(r)), body)
    body = Let(r, RefCreate(d), body)
    square = Function([d], body)
    assert alpha_equal(dcpe(square), Function([d], d * d))
예제 #2
0
def test_ref():
    t = relay.TensorType([], "float32")
    d = relay.Var("d", t)
    r = relay.Var("r", relay.RefType(t))
    x = relay.Var("x")
    body = relay.RefRead(r)
    body = Let(x, RefWrite(r, RefRead(r) * RefRead(r)), body)
    body = Let(r, RefCreate(d), body)
    square = Function([d], body)
    expected = run_opt_pass(Function([d], d * d), transform.InferType())
    assert tvm.ir.structural_equal(dcpe(square), expected)
예제 #3
0
def test_ref():
    t = relay.TensorType([], "float32")
    d = relay.Var("d", t)
    r = relay.Var("r", relay.RefType(t))
    x = relay.Var("x")
    body = relay.RefRead(r)
    body = Let(x, RefWrite(r, RefRead(r) * RefRead(r)), body)
    body = Let(r, RefCreate(d), body)
    square = Function([d], body)
    expected = transform.OptimizeOnExpr(Function([d], d * d),
                                        transform.InferType())
    assert alpha_equal(dcpe(square), expected)
예제 #4
0
def test_ref():
    t = relay.TensorType([], "float32")
    d = relay.Var("d", t)
    r = relay.Var("r", relay.RefType(t))
    x = relay.Var("x")
    body = relay.RefRead(r)
    body = Let(x, RefWrite(r, RefRead(r) * RefRead(r)), body)
    body = Let(r, RefCreate(d), body)
    square = Function([d], body)
    expected = run_opt_pass(Function([d], d * d), transform.InferType())
    # TODO(mbs): Revisit once DCE eliminates dead writes.
    actual = dcpe(square, ignore_impurity=True)
    assert tvm.ir.structural_equal(actual, expected)
def test_if_ref():
    shape = ()
    dtype = "bool"
    t = TensorType(shape, dtype)
    d = Var("d", t)
    r = Var("r")
    update = Function([], RefWrite(r, RefRead(r) + RefRead(r)))
    u = Var("u")
    body = If(d, u(), u())
    eff = Var("eff")
    body = Let(eff, body, RefRead(r))
    f = Function([d], Let(r, RefCreate(const(1)), Let(u, update, body)))
    pe_f = tipe(f)
    f_res = create_executor().evaluate(f)(const(True))
    pe_f_res = create_executor().evaluate(pe_f)(const(True))
    np.testing.assert_allclose(f_res.numpy(), 2 * np.ones_like(f_res.numpy()))
    np.testing.assert_allclose(pe_f_res.numpy(), 2 * np.ones_like(pe_f_res.numpy()))
def test_function_invalidate():
    shape = ()
    dtype = "bool"
    t = TensorType(shape, dtype)
    d = Var("d", t)
    r = Var("r")
    fetch = Function([], RefRead(r))
    fet = Var("fetch")
    fet_obscured = Var("fetch_obscured")
    u = Var("u")
    body = If(d, fet_obscured(), fet_obscured())
    body = Let(u, RefWrite(r, const(1)), body)
    body = Let(fet_obscured, If(d, fet, fet), body)
    body = Let(fet, fetch, body)
    body = Let(r, RefCreate(const(0)), body)
    f = Function([d], body)
    pe_f = tipe(f)
    f_res = create_executor().evaluate(f)(const(True))
    pe_f_res = create_executor().evaluate(pe_f)(const(True))
    np.testing.assert_allclose(f_res.numpy(), np.ones_like(f_res.numpy()))
    np.testing.assert_allclose(pe_f_res.numpy(), np.ones_like(pe_f_res.numpy()))