def test_workload_padding( self, target, input_shape, weight_shape, stride, padding, dilation, dtype, ref_data, ): a_np, w_np, b_np, c_np = ref_data _, _, out_height, out_width = c_np.shape A = te.placeholder(input_shape, name="A", dtype=dtype) W = te.placeholder(weight_shape, name="W", dtype=dtype) with tvm.target.Target(target): wkl = _get_workload(A, W, (stride, stride), padding, dilation, dtype) # check if tile_ow candidates are the factors of the right output weight. cfg = autotvm.get_config() _fallback_schedule(cfg, wkl) ow_tile = np.prod(cfg["tile_ow"].size) tvm.testing.assert_allclose(ow_tile, out_width)
def verify_workload_padding(): _, _, out_height, out_width = get_const_tuple(c_np.shape) wkl = _get_workload(A, W, (stride, stride), padding, dilation, dtype) # check if tile_ow candidates are the factors of the right output weight. cfg = autotvm.get_config() _fallback_schedule(cfg, wkl) ow_tile = np.prod(cfg["tile_ow"].size) tvm.testing.assert_allclose(ow_tile, out_width)