예제 #1
0
def test_broadcast_to(in_shape, out_shape):
    global TASK
    TASK = ("bcast_to_i" + "_".join([str(ele) for ele in in_shape]) + "o" +
            "_".join([str(ele) for ele in out_shape]))
    # Build the logic and compile the function
    A = te.placeholder(shape=in_shape, name="A")
    B = topi.broadcast_to(A, out_shape)
    s = topi.cuda.schedule_broadcast(B)
    fcuda = tvm.build(s, [A, B], "cuda", name="broadcast_to")

    data_npy = np.random.uniform(size=in_shape).astype(A.dtype)
    out_npy = np.broadcast_to(data_npy, out_shape)

    data_nd = tvm.nd.array(data_npy, tvm.cuda())
    out_nd = tvm.nd.array(np.empty(out_shape).astype(B.dtype), tvm.cuda())
    for _ in range(2):
        fcuda(data_nd, out_nd)
    tvm.testing.assert_allclose(out_nd.numpy(), out_npy)
예제 #2
0
def test_topi():
    X = te.placeholder((1, 2, 4, 4), name="X")
    W = te.placeholder((5, 2, 3, 3), name="W")
    W1 = te.placeholder((2, 5, 3, 3), name="W1")
    W2 = te.placeholder((1, ), name="W2")

    R = topi.nn.conv2d(X, W, 1, 1, 1)
    check_grad(R, [X, W])

    R1 = topi.nn.conv2d(topi.nn.relu(R), W1, 1, 0, 1)
    check_grad(R1, [X, W, W1])

    R = topi.broadcast_to(W2, (5, 2, 3, 3))
    check_grad(R, [W2])

    R = topi.nn.conv2d(X, topi.broadcast_to(W2, (5, 2, 3, 3)), 1, 1, 1)
    check_grad(R, [X, W2])

    R = topi.nn.pool(X, [2, 2], [2, 2], [0, 0, 0, 0], "avg")
    check_grad(R, X)

    R = topi.nn.pool(X, [2, 2], [2, 2], [0, 0, 0, 0], "max")
    check_grad(R, X)

    X = te.placeholder((1, 2, 5, 5), name="X")
    R = topi.reshape(X, (1, 32))
    check_grad(R, [X])

    X = te.placeholder((1, 2, 5, 5), name="X")
    W = te.placeholder((2, 2, 3, 3), name="W")

    S = topi.reshape(X, (1, 50))
    check_grad(S, [X])

    R = X + topi.nn.conv2d(X + topi.nn.conv2d(X, W, 1, 1, 1), W, 1, 1, 1)
    check_grad(R, [X, W])

    S = topi.nn.softmax(topi.reshape(R, (1, 50)))
    check_grad(S, [X, W])

    S = topi.sigmoid(topi.reshape(R, (1, 50)))
    check_grad(S, [X, W])

    S = topi.tanh(topi.reshape(R, (1, 50)))
    check_grad(S, [X, W])

    S = topi.nn.log_softmax(topi.reshape(R, (1, 50)))
    check_grad(S, [X, W])
    check_grad(S, [W], [X])

    X = te.placeholder((1, 2, 3, 5), name="X")
    Y = te.placeholder((1, 2, 7, 5), name="Y")
    S = topi.concatenate((X, Y), 2)
    check_grad(S, [X, Y])

    X = te.placeholder((1, 2, 6, 5), name="X")
    (S, R) = topi.split(X, 2, 2)
    check_grad(S, [X])
    check_grad(R, [X])
    R1 = topi.concatenate((S, R), 2)
    check_grad(R1, [X])
    R2 = topi.concatenate((R, S), 2)
    check_grad(R2, [X])

    X = te.placeholder((4, 5), name="X")
    I = te.placeholder((100, ), name="I", dtype="int32")
    R = topi.take(X, topi.abs(I))
    check_grad(R, [X], [I])

    W = te.placeholder((5, 5), name="W")
    exps = topi.exp(topi.nn.dense(X, W))
    sumexps = topi.sum(exps, axis=-1, keepdims=True)
    R = exps / sumexps
    check_grad(R, [X, W], data_range=(-1, 1))