예제 #1
0
파일: run_c3.py 프로젝트: dbiir/UER-py
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    finetune_opts(parser)

    parser.add_argument(
        "--max_choices_num",
        default=4,
        type=int,
        help=
        "The maximum number of cadicate answer, shorter than this will be padded."
    )

    tokenizer_opts(parser)

    adv_opts(parser)

    args = parser.parse_args()
    args.labels_num = args.max_choices_num

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build multiple choice model.
    model = MultipleChoice(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    # Get logger.
    args.logger = init_logger(args)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)
    instances_num = len(trainset)
    batch_size = args.batch_size

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    args.logger.info("Batch size: {}".format(batch_size))
    args.logger.info(
        "The number of training instances: {}".format(instances_num))

    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        args.logger.info("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    if args.use_adv:
        args.adv_method = str2adv[args.adv_type](model)

    total_loss, result, best_result = 0.0, 0.0, 0.0

    args.logger.info("Start training.")

    for epoch in range(1, args.epochs_num + 1):
        random.shuffle(trainset)
        src = torch.LongTensor([example[0] for example in trainset])
        tgt = torch.LongTensor([example[1] for example in trainset])
        seg = torch.LongTensor([example[2] for example in trainset])

        model.train()
        for i, (src_batch, tgt_batch, seg_batch,
                _) in enumerate(batch_loader(batch_size, src, tgt, seg)):

            loss = train_model(args, model, optimizer, scheduler, src_batch,
                               tgt_batch, seg_batch)
            total_loss += loss.item()

            if (i + 1) % args.report_steps == 0:
                args.logger.info(
                    "Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                    format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        result = evaluate(args, read_dataset(args, args.dev_path))
        if result[0] > best_result:
            best_result = result[0]
            save_model(model, args.output_model_path)

    # Evaluation phase.
    if args.test_path is not None:
        args.logger.info("Test set evaluation.")
        if torch.cuda.device_count() > 1:
            args.model.module.load_state_dict(
                torch.load(args.output_model_path))
        else:
            args.model.load_state_dict(torch.load(args.output_model_path))
        evaluate(args, read_dataset(args, args.test_path))
예제 #2
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    finetune_opts(parser)

    parser.add_argument("--pooling",
                        choices=["mean", "max", "first", "last"],
                        default="first",
                        help="Pooling type.")

    tokenizer_opts(parser)

    parser.add_argument("--soft_targets",
                        action='store_true',
                        help="Train model with logits.")
    parser.add_argument("--soft_alpha",
                        type=float,
                        default=0.5,
                        help="Weight of the soft targets loss.")

    adv_opts(parser)

    args = parser.parse_args()

    # Load the hyperparameters from the config file.
    args = load_hyperparam(args)

    set_seed(args.seed)

    # Count the number of labels.
    args.labels_num = count_labels_num(args.train_path)

    # Build tokenizer.
    args.tokenizer = str2tokenizer[args.tokenizer](args)

    # Build classification model.
    model = Classifier(args)

    # Load or initialize parameters.
    load_or_initialize_parameters(args, model)

    args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(args.device)

    # Training phase.
    trainset = read_dataset(args, args.train_path)
    random.shuffle(trainset)
    instances_num = len(trainset)
    batch_size = args.batch_size

    src = torch.LongTensor([example[0] for example in trainset])
    tgt = torch.LongTensor([example[1] for example in trainset])
    seg = torch.LongTensor([example[2] for example in trainset])
    if args.soft_targets:
        soft_tgt = torch.FloatTensor([example[3] for example in trainset])
    else:
        soft_tgt = None

    args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1

    print("Batch size: ", batch_size)
    print("The number of training instances:", instances_num)

    optimizer, scheduler = build_optimizer(args, model)

    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
        args.amp = amp

    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(
            torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    args.model = model

    if args.use_adv:
        args.adv_method = str2adv[args.adv_type](model)

    total_loss, result, best_result = 0.0, 0.0, 0.0

    print("Start training.")

    for epoch in range(1, args.epochs_num + 1):
        model.train()
        for i, (src_batch, tgt_batch, seg_batch, soft_tgt_batch) in enumerate(
                batch_loader(batch_size, src, tgt, seg, soft_tgt)):
            loss = train_model(args, model, optimizer, scheduler, src_batch,
                               tgt_batch, seg_batch, soft_tgt_batch)
            total_loss += loss.item()
            if (i + 1) % args.report_steps == 0:
                print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".
                      format(epoch, i + 1, total_loss / args.report_steps))
                total_loss = 0.0

        result = evaluate(args, read_dataset(args, args.dev_path))
        if result[0] > best_result:
            best_result = result[0]
            save_model(model, args.output_model_path)

    # Evaluation phase.
    if args.test_path is not None:
        print("Test set evaluation.")
        if torch.cuda.device_count() > 1:
            args.model.module.load_state_dict(
                torch.load(args.output_model_path))
        else:
            args.model.load_state_dict(torch.load(args.output_model_path))
        evaluate(args, read_dataset(args, args.test_path), True)