def dumpAct(fname, info, actlst, base=1): actlst2 = [i - base for i in actlst] mol, ova, fav, pT, nb, nalpha, nbeta, nc, na, nv, lmo, enorb, occ = info corb = set(range(nc)) aorb = set(range(nc, nc + na)) vorb = set(range(nc + na, nc + na + nv)) print '[dumpAct]' print ' corb=', corb print ' aorb=', aorb print ' vorb=', vorb sorb = set(actlst2) rcorb = corb.difference(corb.intersection(sorb)) #assuming act in actlst #raorb = aorb.difference(aorb.intersection(sorb)) rvorb = vorb.difference(vorb.intersection(sorb)) corb = list(rcorb) aorb = list(sorb) vorb = list(rvorb) print ' corb=', corb print ' aorb=', aorb print ' vorb=', vorb clmo = lmo[:, corb].copy() almo = lmo[:, aorb].copy() vlmo = lmo[:, vorb].copy() ierr, ua = pmloc.loc(mol, almo) almo = almo.dot(ua) #>>> DUMP <<<# # P-SORT mo_c = clmo mo_v = vlmo e_c = enorb[corb].copy() e_v = enorb[vorb].copy() n_c = occ[corb].copy() n_v = occ[vorb].copy() mo_o, n_o, e_o = ulocal.psort(ova, fav, pT, almo) lmo2 = numpy.hstack((mo_c, mo_o, mo_v)) enorb = numpy.hstack([e_c, e_o, e_v]) occ = numpy.hstack([n_c, n_o, n_v]) assert len(enorb) == nb assert len(occ) == nb # CHECK diff = reduce(numpy.dot, (lmo2.T, ova, lmo2)) - numpy.identity(nb) print 'diff=', numpy.linalg.norm(diff) ulocal.lowdinPop(mol, lmo, ova, enorb, occ) ulocal.dumpLMO(mol, fname + '_new', lmo2) print 'nalpha,nbeta,mol.spin,nb:',\ nalpha,nbeta,mol.spin,nb print 'diff(LMO2-LMO)=', numpy.linalg.norm(lmo2 - lmo) nc = len(e_c) na = len(e_o) nv = len(e_v) assert na == len(actlst) assert nc + na + nv == nb print 'nc,na,nv,nb=', nc, na, nv, nb return lmo2, nc, na, nv
def dumpAct(fname,info,actlst,base=1): actlst2 = [i-base for i in actlst] mol,ova,fav,pT,nb,nalpha,nbeta,nc,na,nv,lmo,enorb,occ = info corb = set(range(nc)) aorb = set(range(nc,nc+na)) vorb = set(range(nc+na,nc+na+nv)) print '[dumpAct]' print ' corb=',corb print ' aorb=',aorb print ' vorb=',vorb sorb = set(actlst2) rcorb = corb.difference(corb.intersection(sorb)) #assuming act in actlst #raorb = aorb.difference(aorb.intersection(sorb)) rvorb = vorb.difference(vorb.intersection(sorb)) corb = list(rcorb) aorb = list(sorb) vorb = list(rvorb) print ' corb=',corb print ' aorb=',aorb print ' vorb=',vorb clmo = lmo[:,corb].copy() almo = lmo[:,aorb].copy() vlmo = lmo[:,vorb].copy() ierr,ua = pmloc.loc(mol,almo) almo = almo.dot(ua) #>>> DUMP <<<# # P-SORT mo_c = clmo mo_v = vlmo e_c = enorb[corb].copy() e_v = enorb[vorb].copy() n_c = occ[corb].copy() n_v = occ[vorb].copy() mo_o,n_o,e_o = ulocal.psort(ova,fav,pT,almo) lmo2 = numpy.hstack((mo_c,mo_o,mo_v)) enorb = numpy.hstack([e_c,e_o,e_v]) occ = numpy.hstack([n_c,n_o,n_v]) assert len(enorb)==nb assert len(occ)==nb # CHECK diff = reduce(numpy.dot,(lmo2.T,ova,lmo2)) - numpy.identity(nb) print 'diff=',numpy.linalg.norm(diff) ulocal.lowdinPop(mol,lmo,ova,enorb,occ) ulocal.dumpLMO(mol,fname+'_new',lmo2) print 'nalpha,nbeta,mol.spin,nb:',\ nalpha,nbeta,mol.spin,nb print 'diff(LMO2-LMO)=',numpy.linalg.norm(lmo2-lmo) nc = len(e_c) na = len(e_o) nv = len(e_v) assert na == len(actlst) assert nc+na+nv == nb print 'nc,na,nv,nb=',nc,na,nv,nb return lmo2,nc,na,nv
def dumpLUNO(fname, thresh=0.01): chkfile = fname + '.chk' outfile = fname + '_cmo.molden' tools.molden.from_chkfile(outfile, chkfile) #============================= # Natural orbitals # Lowdin basis X=S{-1/2} # psi = chi * C # = chi' * C' # = chi*X*(X{-1}C') #============================= mol, mf = scf.chkfile.load_scf(chkfile) mo_coeff = mf["mo_coeff"] ova = mol.intor_symmetric("cint1e_ovlp_sph") nb = mo_coeff.shape[1] # Check overlap diff = reduce(numpy.dot, (mo_coeff[0].T, ova, mo_coeff[0])) - numpy.identity(nb) print numpy.linalg.norm(diff) diff = reduce(numpy.dot, (mo_coeff[1].T, ova, mo_coeff[1])) - numpy.identity(nb) print numpy.linalg.norm(diff) # UHF-alpha/beta ma = mo_coeff[0] mb = mo_coeff[1] nalpha = (mol.nelectron + mol.spin) / 2 nbeta = (mol.nelectron - mol.spin) / 2 # Spin-averaged DM pTa = numpy.dot(ma[:, :nalpha], ma[:, :nalpha].T) pTb = numpy.dot(mb[:, :nbeta], mb[:, :nbeta].T) pT = 0.5 * (pTa + pTb) # Lowdin basis s12 = sqrtm(ova) s12inv = lowdin(ova) pTOAO = reduce(numpy.dot, (s12, pT, s12)) eig, coeff = scipy.linalg.eigh(-pTOAO) eig = -2.0 * eig eig[eig < 0.0] = 0.0 eig[abs(eig) < 1.e-14] = 0.0 ifplot = False #True if ifplot: import matplotlib.pyplot as plt plt.plot(range(nb), eig, 'ro') plt.show() # Back to AO basis coeff = numpy.dot(s12inv, coeff) diff = reduce(numpy.dot, (coeff.T, ova, coeff)) - numpy.identity(nb) print 'CtSC-I', numpy.linalg.norm(diff) # # Averaged Fock # enorb = mf["mo_energy"] fa = reduce(numpy.dot, (ma, numpy.diag(enorb[0]), ma.T)) fb = reduce(numpy.dot, (mb, numpy.diag(enorb[1]), mb.T)) # Non-orthogonal cases: FC=SCE # Fao = SC*e*C{-1} = S*C*e*Ct*S fav = 0.5 * (fa + fb) # Expectation value of natural orbitals <i|F|i> fexpt = reduce(numpy.dot, (coeff.T, ova, fav, ova, coeff)) enorb = numpy.diag(fexpt) nocc = eig.copy() # # Reordering and define active space according to thresh # idx = 0 active = [] for i in range(nb): if nocc[i] <= 2.0 - thresh and nocc[i] >= thresh: active.append(True) else: active.append(False) print '\nNatural orbitals:' for i in range(nb): print 'orb:', i, active[i], nocc[i], enorb[i] active = numpy.array(active) actIndices = list(numpy.argwhere(active == True).flatten()) cOrbs = coeff[:, :actIndices[0]] aOrbs = coeff[:, actIndices] vOrbs = coeff[:, actIndices[-1] + 1:] nb = cOrbs.shape[0] nc = cOrbs.shape[1] na = aOrbs.shape[1] nv = vOrbs.shape[1] print 'core orbs:', cOrbs.shape print 'act orbs:', aOrbs.shape print 'vir orbs:', vOrbs.shape assert nc + na + nv == nb # dump UNO with open(fname + '_uno.molden', 'w') as thefile: molden.header(mol, thefile) molden.orbital_coeff(mol, thefile, coeff) #===================== # Population analysis #===================== from pyscf import lo aux = lo.orth_ao(mol, method='meta_lowdin') #clmo = ulocal.scdm(cOrbs,ova,aux) #almo = ulocal.scdm(aOrbs,ova,aux) clmo = cOrbs almo = aOrbs ierr, uc = pmloc.loc(mol, clmo) ierr, ua = pmloc.loc(mol, almo) clmo = clmo.dot(uc) almo = almo.dot(ua) vlmo = ulocal.scdm(vOrbs, ova, aux) # P-SORT mo_c, n_c, e_c = ulocal.psort(ova, fav, pT, clmo) mo_o, n_o, e_o = ulocal.psort(ova, fav, pT, almo) mo_v, n_v, e_v = ulocal.psort(ova, fav, pT, vlmo) lmo = numpy.hstack((mo_c, mo_o, mo_v)).copy() enorb = numpy.hstack([e_c, e_o, e_v]) occ = numpy.hstack([n_c, n_o, n_v]) # CHECK diff = reduce(numpy.dot, (lmo.T, ova, lmo)) - numpy.identity(nb) print 'diff=', numpy.linalg.norm(diff) ulocal.lowdinPop(mol, lmo, ova, enorb, occ) ulocal.dumpLMO(mol, fname, lmo) print 'nalpha,nbeta,mol.spin,nb:',\ nalpha,nbeta,mol.spin,nb return mol, ova, fav, pT, nb, nalpha, nbeta, nc, na, nv, lmo, enorb, occ
def dumpLUNO(fname,thresh=0.01): chkfile = fname+'.chk' outfile = fname+'_cmo.molden' tools.molden.from_chkfile(outfile, chkfile) #============================= # Natural orbitals # Lowdin basis X=S{-1/2} # psi = chi * C # = chi' * C' # = chi*X*(X{-1}C') #============================= mol,mf = scf.chkfile.load_scf(chkfile) mo_coeff = mf["mo_coeff"] ova=mol.intor_symmetric("cint1e_ovlp_sph") nb = mo_coeff.shape[1] # Check overlap diff = reduce(numpy.dot,(mo_coeff[0].T,ova,mo_coeff[0])) - numpy.identity(nb) print numpy.linalg.norm(diff) diff = reduce(numpy.dot,(mo_coeff[1].T,ova,mo_coeff[1])) - numpy.identity(nb) print numpy.linalg.norm(diff) # UHF-alpha/beta ma = mo_coeff[0] mb = mo_coeff[1] nalpha = (mol.nelectron+mol.spin)/2 nbeta = (mol.nelectron-mol.spin)/2 # Spin-averaged DM pTa = numpy.dot(ma[:,:nalpha],ma[:,:nalpha].T) pTb = numpy.dot(mb[:,:nbeta],mb[:,:nbeta].T) pT = 0.5*(pTa+pTb) # Lowdin basis s12 = sqrtm(ova) s12inv = lowdin(ova) pTOAO = reduce(numpy.dot,(s12,pT,s12)) eig,coeff = scipy.linalg.eigh(-pTOAO) eig = -2.0*eig eig[eig<0.0]=0.0 eig[abs(eig)<1.e-14]=0.0 ifplot = False #True if ifplot: import matplotlib.pyplot as plt plt.plot(range(nb),eig,'ro') plt.show() # Back to AO basis coeff = numpy.dot(s12inv,coeff) diff = reduce(numpy.dot,(coeff.T,ova,coeff)) - numpy.identity(nb) print 'CtSC-I',numpy.linalg.norm(diff) # # Averaged Fock # enorb = mf["mo_energy"] fa = reduce(numpy.dot,(ma,numpy.diag(enorb[0]),ma.T)) fb = reduce(numpy.dot,(mb,numpy.diag(enorb[1]),mb.T)) # Non-orthogonal cases: FC=SCE # Fao = SC*e*C{-1} = S*C*e*Ct*S fav = 0.5*(fa+fb) # Expectation value of natural orbitals <i|F|i> fexpt = reduce(numpy.dot,(coeff.T,ova,fav,ova,coeff)) enorb = numpy.diag(fexpt) nocc = eig.copy() # # Reordering and define active space according to thresh # idx = 0 active=[] for i in range(nb): if nocc[i]<=2.0-thresh and nocc[i]>=thresh: active.append(True) else: active.append(False) print '\nNatural orbitals:' for i in range(nb): print 'orb:',i,active[i],nocc[i],enorb[i] active = numpy.array(active) actIndices = list(numpy.argwhere(active==True).flatten()) cOrbs = coeff[:,:actIndices[0]] aOrbs = coeff[:,actIndices] vOrbs = coeff[:,actIndices[-1]+1:] nb = cOrbs.shape[0] nc = cOrbs.shape[1] na = aOrbs.shape[1] nv = vOrbs.shape[1] print 'core orbs:',cOrbs.shape print 'act orbs:',aOrbs.shape print 'vir orbs:',vOrbs.shape assert nc+na+nv == nb # dump UNO with open(fname+'_uno.molden','w') as thefile: molden.header(mol,thefile) molden.orbital_coeff(mol,thefile,coeff) #===================== # Population analysis #===================== aux = s12inv #clmo = ulocal.scdm(cOrbs,ova,aux) #almo = ulocal.scdm(aOrbs,ova,aux) clmo = cOrbs almo = aOrbs ierr,uc = pmloc.loc(mol,clmo) ierr,ua = pmloc.loc(mol,almo) clmo = clmo.dot(uc) almo = almo.dot(ua) vlmo = ulocal.scdm(vOrbs,ova,aux) # P-SORT mo_c,n_c,e_c = ulocal.psort(ova,fav,pT,clmo) mo_o,n_o,e_o = ulocal.psort(ova,fav,pT,almo) mo_v,n_v,e_v = ulocal.psort(ova,fav,pT,vlmo) lmo = numpy.hstack((mo_c,mo_o,mo_v)).copy() enorb = numpy.hstack([e_c,e_o,e_v]) occ = numpy.hstack([n_c,n_o,n_v]) # CHECK diff = reduce(numpy.dot,(lmo.T,ova,lmo)) - numpy.identity(nb) print 'diff=',numpy.linalg.norm(diff) ulocal.lowdinPop(mol,lmo,ova,enorb,occ) ulocal.dumpLMO(mol,fname,lmo) print 'nalpha,nbeta,mol.spin,nb:',\ nalpha,nbeta,mol.spin,nb return mol,ova,fav,pT,nb,nalpha,nbeta,nc,na,nv,lmo,enorb,occ