def read_session_normaldata(session): """Read normal data according to patient info in current session""" info = sessionutils.load_info(session) if info is not None and 'hetu' in info: age = age_from_hetu(info['hetu']) else: age = None return read_default_normaldata(age)
def _read_session_normaldata(session): """Read model normal data according to patient in given session. This is a convenience that figures out the age of the patient and calls _read_default_normaldata""" info = sessionutils.load_info(session) if info is not None and 'hetu' in info: age = age_from_hetu(info['hetu']) else: age = None return _read_configured_model_normaldata(age)
def dash_report( sessions, info=None, max_cycles=None, tags=None, signals=None, recreate_plots=None, video_only=None, ): """Create a gait report dash app. Parameters ---------- sessions : list List of session directories. For more than one session dirs, a comparison report will be created. Up to three sessions can be compared in the report. info : dict | None The patient info. If not None, some info will be shown in the report. max_cycles : dict | None Maximum number of gait cycles to plot for each variable type. If None, taken from config. tags : list | None Eclipse tags for finding dynamic gait trials. If None, will be taken from config. signals : ProgressSignals | None Instance of ProgressSignals, used to send progress updates across threads and track the cancel flag which aborts the creation of the report. If None, a dummy one will be created. recreate_plots : bool If True, force recreation of the report figures. Otherwise, cached figure data will be used, unless the report c3d files have changed (a checksum mechanism is used to verify this). video_only : bool If True, create a video-only report (no gait curves). Returns ------- dash.Dash | None The dash (flask) app, or None if report creation failed. """ sessions = [Path(s) for s in sessions] if recreate_plots is None: recreate_plots = False if video_only is None: video_only = False # relative width of left panel (1-12) # uncomment to use narrower video panel for 3-session comparison # LEFT_WIDTH = 8 if len(sessions) == 3 else 7 LEFT_WIDTH = 8 VIDS_TOTAL_HEIGHT = 88 # % of browser window height if len(sessions) < 1 or len(sessions) > 3: raise ValueError('Need a list of one to three sessions') is_comparison = len(sessions) > 1 report_name = _report_name(sessions) info = info or sessionutils.default_info() # tags for dynamic trials if tags is None: dyn_tags = cfg.eclipse.tags else: dyn_tags = tags # signals is used to track progress across threads; if not given, create a dummy one if signals is None: signals = ProgressSignals() # this tag will be shown in the menu for static trials static_tag = 'Static' # get the camera labels # reduce to a set, since there may be several labels for given id camera_labels = set(cfg.general.camera_labels.values()) # add camera labels for overlay videos # XXX: may cause trouble if camera labels already contain the string 'overlay' camera_labels_overlay = [lbl + ' overlay' for lbl in camera_labels] camera_labels.update(camera_labels_overlay) # build dict of videos for given tag / camera label # videos will be listed in session order vid_urls = dict() all_tags = dyn_tags + [static_tag] + cfg.eclipse.video_tags for tag in all_tags: vid_urls[tag] = dict() for camera_label in camera_labels: vid_urls[tag][camera_label] = list() # collect all session enfs into dict enfs = {session: dict() for session in sessions} data_enfs = list() # enfs that are used for data signals.progress.emit('Collecting trials...', 0) for session in sessions: if signals.canceled: return None enfs[session] = dict(dynamic=dict(), static=dict(), vid_only=dict()) # collect dynamic trials for each tag for tag in dyn_tags: dyns = sessionutils.get_enfs(session, tags=tag, trial_type='dynamic') if len(dyns) > 1: logger.warning(f'multiple tagged trials ({tag}) for {session}') dyn_trial = dyns[-1:] enfs[session]['dynamic'][tag] = dyn_trial # may be empty list if dyn_trial: data_enfs.extend(dyn_trial) # require at least one dynamic trial for each session if not any(enfs[session]['dynamic'][tag] for tag in dyn_tags): raise GaitDataError(f'No tagged dynamic trials found for {session}') # collect static trial (at most 1 per session) # rules: # -prefer enfs that have a corresponding c3d file, even for a video-only report # (so that the same static gets used for both video-only and full reports) # -prefer the newest static trial sts = sessionutils.get_enfs(session, trial_type='static') for st in reversed(sts): # newest first st_c3d = sessionutils.enf_to_trialfile(st, '.c3d') if st_c3d.is_file(): static_trial = [st] break else: # no c3ds were found - just pick the latest static trial static_trial = sts[-1:] enfs[session]['static'][static_tag] = static_trial if static_trial: data_enfs.extend(static_trial) # collect video-only dynamic trials for tag in cfg.eclipse.video_tags: dyn_vids = sessionutils.get_enfs(session, tags=tag) if len(dyn_vids) > 1: logger.warning( f'multiple tagged video-only trials ({tag}) for {session}' ) enfs[session]['vid_only'][tag] = dyn_vids[-1:] # collect all videos for given tag and camera, listed in session order signals.progress.emit('Finding videos...', 0) for session in sessions: for trial_type in enfs[session]: for tag, enfs_this in enfs[session][trial_type].items(): if enfs_this: enf = enfs_this[0] # only one enf per tag and session for camera_label in camera_labels: overlay = 'overlay' in camera_label real_camera_label = ( camera_label[: camera_label.find(' overlay')] if overlay else camera_label ) # need to convert filename, since get_trial_videos cannot # deal with enf names c3d = enf_to_trialfile(enf, 'c3d') vids_this = videos.get_trial_videos( c3d, camera_label=real_camera_label, vid_ext='.ogv', overlay=overlay, ) if vids_this: vid = vids_this[0] url = f'/static/{vid.name}' vid_urls[tag][camera_label].append(url) # build dcc.Dropdown options list for cameras and tags # list cameras which have videos for any tag opts_cameras = list() for camera_label in sorted(camera_labels): if any(vid_urls[tag][camera_label] for tag in all_tags): opts_cameras.append({'label': camera_label, 'value': camera_label}) # list tags which have videos for any camera opts_tags = list() for tag in all_tags: if any(vid_urls[tag][camera_label] for camera_label in camera_labels): opts_tags.append({'label': f'{tag}', 'value': tag}) # add null entry in case we got no videos at all if not opts_tags: opts_tags.append({'label': 'No videos', 'value': 'no videos', 'disabled': True}) # create (or load) the figures # this section is only run if we have c3d data if not video_only: data_c3ds = [enf_to_trialfile(enffile, 'c3d') for enffile in data_enfs] # at this point, all the c3ds need to exist missing = [fn for fn in data_c3ds if not fn.is_file()] if missing: missing_trials = ', '.join([fn.stem for fn in missing]) raise GaitDataError( f'c3d files missing for following trials: {missing_trials}' ) # see whether we can load report figures from disk digest = numutils._files_digest(data_c3ds) logger.debug(f'report data digest: {digest}') # the cached data is always saved into alphabetically first session data_dir = sorted(sessions)[0] data_fn = data_dir / f'web_report_{digest}.dat' if data_fn.is_file() and not recreate_plots: logger.info(f'loading saved report data from {data_fn}') signals.progress.emit('Loading saved report...', 0) try: with open(data_fn, 'rb') as f: saved_report_data = pickle.load(f) except UnicodeDecodeError: logger.warning('cannot open report (probably made with legacy version)') logger.warning('recreating...') saved_report_data = dict() else: saved_report_data = dict() logger.info('no saved data found or recreate forced') # make Trial instances for all dynamic and static trials # this is currently necessary even if saved figures are used trials_dyn = list() trials_dyn_dict = dict() # also organize dynamic trials by session trials_static = list() for session in sessions: trials_dyn_dict[session] = list() for tag in dyn_tags: if enfs[session]['dynamic'][tag]: if signals.canceled: return None c3dfile = enf_to_trialfile(enfs[session]['dynamic'][tag][0], 'c3d') tri = Trial(c3dfile) trials_dyn.append(tri) trials_dyn_dict[session].append(tri) if enfs[session]['static'][static_tag]: c3dfile = enf_to_trialfile(enfs[session]['static']['Static'][0], 'c3d') tri = Trial(c3dfile) trials_static.append(tri) emg_auto_layout = None # stuff that's needed to (re)create the figures if not saved_report_data: age = None if info['hetu'] is not None: # compute subject age at session time session_dates = [ sessionutils.get_session_date(session) for session in sessions ] ages = [age_from_hetu(info['hetu'], d) for d in session_dates] try: age = max(ages) except TypeError: age = None # create Markdown text for patient info patient_info_text = '##### %s ' % ( info['fullname'] if info['fullname'] else 'Name unknown' ) if info['hetu']: patient_info_text += f"({info['hetu']})" patient_info_text += '\n\n' # if age: # patient_info_text += 'Age at measurement time: %d\n\n' % age # load normal data for gait models; we have to do it here instead of # leaving it up to plot_trials, since it's session (age) specific signals.progress.emit('Loading normal data...', 0) model_normaldata = normaldata._read_configured_model_normaldata(age) # make average trials for each session avg_trials = [ AvgTrial.from_trials(trials_dyn_dict[session], sessionpath=session) for session in sessions ] # prepare for the curve-extracted value plots logger.debug('extracting values for curve-extracted plots...') vardefs_dict = dict(cfg.report.vardefs) allvars = [ vardef[0] for vardefs in vardefs_dict.values() for vardef in vardefs ] from_models = set(models.model_from_var(var) for var in allvars) if None in from_models: raise GaitDataError(f'unknown variables in extract list: {allvars}') curve_vals = { session.name: _trials_extract_values(trials, from_models=from_models) for session, trials in trials_dyn_dict.items() } # in EMG layout, keep chs that are active in any of the trials signals.progress.emit('Reading EMG data', 0) try: emgs = [tr.emg for tr in trials_dyn] emg_auto_layout = layouts._rm_dead_channels(emgs, cfg.layouts.std_emg) if not emg_auto_layout: emg_auto_layout = None except GaitDataError: emg_auto_layout = None # the layouts are specified as lists of tuples: (title, layout_spec) # where title is the page title, and layout_spec is either string or tuple. # if string, it denotes a special layout (e.g. 'patient_info') # if tuple, the first element should be the string 'layout_name' and the second # a gaitutils configured layout name; # alternatively the first element can be 'layout' and the second element a # valid gaitutils layout page_layouts = dict(cfg.web_report.page_layouts) # pick desired single variables from model and append pigvars = ( models.pig_lowerbody.varlabels_nocontext | models.pig_lowerbody_kinetics.varlabels_nocontext ) pigvars = sorted(pigvars.items(), key=lambda item: item[1]) pigvars_louts = {varlabel: ('layout', [[var]]) for var, varlabel in pigvars} page_layouts.update(pigvars_louts) # add supplementary data for normal layouts supplementary_default = dict() dd_opts_multi_upper = list() dd_opts_multi_lower = list() # loop through the layouts, create or load figures report_data_new = dict() for k, (page_label, layout_spec) in enumerate(page_layouts.items()): signals.progress.emit( f'Creating plot: {page_label}', 100 * k / len(page_layouts) ) if signals.canceled: return None # for comparison report, include session info in plot legends and # use session specific line style emg_mode = None if is_comparison: legend_type = cfg.report.comparison_legend_type style_by = cfg.report.comparison_style_by color_by = cfg.report.comparison_color_by if cfg.report.comparison_emg_as_envelope: emg_mode = 'envelope' else: legend_type = cfg.report.legend_type style_by = cfg.report.style_by color_by = cfg.report.color_by try: if saved_report_data: logger.debug(f'loading {page_label} from saved report data') if page_label not in saved_report_data: # will be caught, resulting in empty menu item raise RuntimeError else: figdata = saved_report_data[page_label] else: logger.debug(f'creating figure data for {page_label}') # the 'special' layouts are indicated by a string if isinstance(layout_spec, str): if layout_spec == 'time_dist': figdata = timedist.plot_comparison( sessions, big_fonts=False, backend='plotly' ) elif layout_spec == 'patient_info': figdata = patient_info_text elif layout_spec == 'static_kinematics': layout_ = cfg.layouts.lb_kinematics figdata = plot_trials( trials_static, layout_, model_normaldata=False, cycles='unnormalized', legend_type='short_name_with_cyclename', style_by=style_by, color_by=color_by, big_fonts=True, ) elif layout_spec == 'static_emg': layout_ = cfg.layouts.std_emg figdata = plot_trials( trials_static, layout_, model_normaldata=False, cycles='unnormalized', legend_type='short_name_with_cyclename', style_by=style_by, color_by=color_by, big_fonts=True, ) elif layout_spec == 'emg_auto': if emg_auto_layout is None: # no valid EMG channels raise RuntimeError else: figdata = plot_trials( trials_dyn, emg_auto_layout, emg_mode=emg_mode, legend_type=legend_type, style_by=style_by, color_by=color_by, supplementary_data=supplementary_default, big_fonts=True, ) elif layout_spec == 'kinematics_average': layout_ = cfg.layouts.lb_kinematics figdata = plot_trials( avg_trials, layout_, style_by=style_by, color_by=color_by, model_normaldata=model_normaldata, big_fonts=True, ) elif layout_spec == 'disabled': # exception will be caught in this loop, resulting in empty menu item raise RuntimeError else: # unrecognized layout; this will cause an exception raise Exception(f'Invalid page layout: {str(layout_spec)}') # regular layouts and curve-extracted layouts are indicated by tuple elif isinstance(layout_spec, tuple): if layout_spec[0] in ['layout_name', 'layout']: if layout_spec[0] == 'layout_name': # get a configured layout by name layout = layouts.get_layout(layout_spec[1]) else: # it's already a valid layout layout = layout_spec[1] # plot according to layout figdata = plot_trials( trials_dyn, layout, model_normaldata=model_normaldata, max_cycles=max_cycles, emg_mode=emg_mode, legend_type=legend_type, style_by=style_by, color_by=color_by, supplementary_data=supplementary_default, big_fonts=True, ) elif layout_spec[0] == 'curve_extracted': the_vardefs = vardefs_dict[layout_spec[1]] figdata = plot_extracted_box(curve_vals, the_vardefs) else: raise Exception(f'Invalid page layout: {str(layout_spec)}') else: raise Exception(f'Invalid page layout: {str(layout_spec)}') # save the newly created data if not saved_report_data: if isinstance(figdata, go.Figure): # serialize go.Figures before saving # this makes them much faster for pickle to handle # apparently dcc.Graph can eat the serialized json directly, # so no need to do anything on load figdata_ = figdata.to_plotly_json() else: figdata_ = figdata report_data_new[page_label] = figdata_ # make the upper and lower panel graphs from figdata, depending # on data type def _is_base64(s): """Test for valid base64 encoding""" try: return base64.b64encode(base64.b64decode(s)) == s except Exception: return False # this is for old style timedist figures that were in base64 # encoded svg if layout_spec == 'time_dist' and _is_base64(figdata): graph_upper = html.Img( src=f'data:image/svg+xml;base64,{figdata}', id='gaitgraph%d' % k, style={'height': '100%'}, ) graph_lower = html.Img( src=f'data:image/svg+xml;base64,{figdata}', id='gaitgraph%d' % (len(page_layouts) + k), style={'height': '100%'}, ) elif layout_spec == 'patient_info': graph_upper = dcc.Markdown(figdata) graph_lower = graph_upper else: # plotly fig -> dcc.Graph graph_upper = dcc.Graph( figure=figdata, id='gaitgraph%d' % k, style={'height': '100%'} ) graph_lower = dcc.Graph( figure=figdata, id='gaitgraph%d' % (len(page_layouts) + k), style={'height': '100%'}, ) dd_opts_multi_upper.append({'label': page_label, 'value': graph_upper}) dd_opts_multi_lower.append({'label': page_label, 'value': graph_lower}) except (RuntimeError, GaitDataError) as e: # could not create a figure logger.warning(f'failed to create figure for {page_label}: {e}') # insert the menu options but make them disabled dd_opts_multi_upper.append( {'label': page_label, 'value': page_label, 'disabled': True} ) dd_opts_multi_lower.append( {'label': page_label, 'value': page_label, 'disabled': True} ) continue opts_multi, mapper_multi_upper = _make_dropdown_lists(dd_opts_multi_upper) opts_multi, mapper_multi_lower = _make_dropdown_lists(dd_opts_multi_lower) # if plots were newly created, save them to disk if not saved_report_data: logger.debug(f'saving report data into {data_fn}') signals.progress.emit('Saving report data to disk...', 99) with open(data_fn, 'wb') as f: pickle.dump(report_data_new, f, protocol=-1) def make_left_panel(split=True, upper_value='Kinematics', lower_value='Kinematics'): """Helper to make the left graph panels. If split=True, make two stacked panels""" # the upper graph & dropdown items = [ dcc.Dropdown( id='dd-vars-upper-multi', clearable=False, options=opts_multi, value=upper_value, ), html.Div( id='div-upper', style={'height': '50%'} if split else {'height': '100%'} ), ] if split: # add the lower one items.extend( [ dcc.Dropdown( id='dd-vars-lower-multi', clearable=False, options=opts_multi, value=lower_value, ), html.Div(id='div-lower', style={'height': '50%'}), ] ) return html.Div(items, style={'height': '80vh'}) # create the app app = dash.Dash('gaitutils') # use local packaged versions of JavaScript libs etc. (no internet needed) app.css.config.serve_locally = True app.scripts.config.serve_locally = True app.title = _report_name(sessions, long_name=False) # this is for generating the classnames in the CSS num2words = { 1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'six', 7: 'seven', 8: 'eight', 9: 'nine', 10: 'ten', 11: 'eleven', 12: 'twelve', } classname_left = f'{num2words[LEFT_WIDTH]} columns' classname_right = f'{num2words[12 - LEFT_WIDTH]} columns' if video_only: app.layout = html.Div( [ # row html.Div( [ # single main div dcc.Dropdown( id='dd-camera', clearable=False, options=opts_cameras, value='Front camera', ), dcc.Dropdown( id='dd-video-tag', clearable=False, options=opts_tags, value=opts_tags[0]['value'], ), html.Div(id='videos'), ], className='12 columns', ), ], className='row', ) else: # the two-panel layout with graphs and video app.layout = html.Div( [ # row html.Div( [ # left main div html.H6(report_name), dcc.Checklist( id='split-left', options=[{'label': 'Two panels', 'value': 'split'}], value=[], ), # need split=True so that both panels are in initial layout html.Div(make_left_panel(split=True), id='div-left-main'), ], className=classname_left, ), html.Div( [ # right main div dcc.Dropdown( id='dd-camera', clearable=False, options=opts_cameras, value='Front camera', ), dcc.Dropdown( id='dd-video-tag', clearable=False, options=opts_tags, value=opts_tags[0]['value'], ), html.Div(id='videos'), ], className=classname_right, ), ], className='row', ) @app.callback( Output('div-left-main', 'children'), [Input('split-left', 'value')], [State('dd-vars-upper-multi', 'value')], ) def update_panel_layout(split_panels, upper_value): split = 'split' in split_panels return make_left_panel(split, upper_value=upper_value) @app.callback( Output('div-upper', 'children'), [Input('dd-vars-upper-multi', 'value')] ) def update_contents_upper_multi(sel_var): return mapper_multi_upper[sel_var] @app.callback( Output('div-lower', 'children'), [Input('dd-vars-lower-multi', 'value')] ) def update_contents_lower_multi(sel_var): return mapper_multi_lower[sel_var] def _video_elem(title, url, max_height): """Create a video element with title""" if not url: return 'No video found' vid_el = html.Video( src=url, controls=True, loop=True, preload='auto', title=title, style={'max-height': max_height, 'max-width': '100%'}, ) # return html.Div([title, vid_el]) # titles above videos return vid_el @app.callback( Output('videos', 'children'), [Input('dd-camera', 'value'), Input('dd-video-tag', 'value')], ) def update_videos(camera_label, tag): """Create a list of video divs according to camera and tag selection""" if tag == 'no videos': return 'No videos found' vid_urls_ = vid_urls[tag][camera_label] if not vid_urls_: return 'No videos found' nvids = len(vid_urls_) max_height = str(int(VIDS_TOTAL_HEIGHT / nvids)) + 'vh' return [_video_elem('video', url, max_height) for url in vid_urls_] # add a static route to serve session data. be careful outside firewalls @app.server.route('/static/<resource>') def serve_file(resource): for session in sessions: filepath = session / resource if filepath.is_file(): return flask.send_from_directory(str(session), resource) return None # add shutdown method - see http://flask.pocoo.org/snippets/67/ @app.server.route('/shutdown') def shutdown(): logger.debug('Received shutdown request...') _shutdown_server() return 'Server shutting down...' # inject some info of our own app._gaitutils_report_name = report_name # XXX: the Flask app ends up with a logger by the name of 'gaitutils', which has a default # stderr handler. since logger hierarchy corresponds to package hierarchy, # this creates a bug where all gaitutils package loggers propagate their messages into # the app logger and they get shown multiple times. as a dirty fix, we disable the # handlers for the app logger (they still get shown since they propagate to the root logger) app.logger.handlers = [] return app
def create_report( sessionpath, info=None, pages=None, destdir=None, write_timedist=False, write_extracted=False, ): """Create a single-session pdf report. Parameters ---------- sessionpath : str | Path Path to session. info : dict, optional Patient info dict. pages : dict, optional Which pages to include to include in report. Set value to True for desired pages. If None, do all pages. Currently supported keys: 'TrialVelocity' 'TimeDistAverage' 'KinematicsCons' 'TorsoKinematicsCons' 'KineticsCons' 'MuscleLenCons' 'KinAverage' destdir : str, optional Destination directory for the pdf report. If None, write into sessionpath. write_timedist : bool If True, also write a text report of time-distance parameters into the same directory as the pdf. write_extracted : bool If True, also write a text report of curve extracted values into the same directory as the pdf. Returns ------- str A status message. """ sessionpath = Path(sessionpath) if info is None: info = defaultdict(lambda: '') fullname = info['fullname'] or '' hetu = info['hetu'] or '' session_description = info['session_description'] or '' if pages is None: pages = defaultdict(lambda: True) # default: do all plots elif not any(pages.values()): pages = defaultdict(lambda: False) do_emg_consistency = True session_root, sessiondir = sessionpath.parent, sessionpath.name patient_code = session_root.name if destdir is None: destdir = sessionpath pdfname = sessiondir + '.pdf' pdfpath = destdir / pdfname tagged_trials = sessionutils._get_tagged_dynamic_c3ds_from_sessions( [sessionpath], tags=cfg.eclipse.tags) # XXX: do we unnecessarily load all trials twice (since plotting calls below don't # use the trials loaded here), or is it a non issue due to caching of c3d files? trials = (trial.Trial(t) for t in tagged_trials) has_kinetics = any(c.on_forceplate for t in trials for c in t.cycles) session_t = sessionutils.get_session_date(sessionpath) logger.debug('session timestamp: %s', session_t) age = age_from_hetu(hetu, session_t) if hetu else None model_normaldata = normaldata._read_session_normaldata(sessionpath) # make header page # timestr = time.strftime('%d.%m.%Y') # current time, not currently used title_txt = f'{cfg.report.laboratory_name}\n' title_txt += f"{translate('Results of gait analysis')}\n" title_txt += '\n' title_txt += f"{translate('Name')}: {fullname}\n" title_txt += '%s: %s\n' % ( translate('Social security number'), hetu if hetu else translate('unknown'), ) age_str = '%d %s' % (age, translate('years')) if age else translate('unknown') title_txt += f"{translate('Age at time of measurement')}: {age_str}\n" title_txt += f"{translate('Session')}: {sessiondir}\n" if session_description: title_txt += f"{translate('Description')}: {session_description}\n" title_txt += '%s: %s\n' % ( translate('Session date'), session_t.strftime('%d.%m.%Y'), ) title_txt += f"{translate('Patient code')}: {patient_code}\n" fig_title = _make_text_fig(title_txt) header = '%s: %s %s: %s' % ( translate('Name'), fullname, translate('Social security number'), hetu, ) musclelen_ndata = normaldata._find_normaldata_for_age(age) footer_musclelen = (f" {translate('Normal data')}: {musclelen_ndata}" if musclelen_ndata else '') # make the figures legend_type = cfg.report.legend_type # not currently used (legends disabled) style_by = cfg.report.style_by color_by = cfg.report.color_by # trial velocity plot fig_vel = None if pages['TrialVelocity']: logger.debug('creating velocity plot') fig_vel = plot_trial_velocities(sessionpath, backend=pdf_backend) # time-distance average fig_timedist_avg = None if pages['TimeDistAverage']: logger.debug('creating time-distance plot') fig_timedist_avg = timedist.plot_session_average(sessionpath, backend=pdf_backend) # for next few plots, disable the legends (there are typically too many cycles) # kin consistency fig_kinematics_cons = None if pages['KinematicsCons']: logger.debug('creating kinematics consistency plot') fig_kinematics_cons = _plot_sessions( sessions=[sessionpath], layout='lb_kinematics', model_normaldata=model_normaldata, color_by=color_by, style_by=style_by, backend=pdf_backend, figtitle=f'Kinematics consistency for {sessiondir}', legend_type=legend_type, legend=False, ) # kinetics consistency fig_kinetics_cons = None if pages['KineticsCons'] and has_kinetics: logger.debug('creating kinetics consistency plot') fig_kinetics_cons = _plot_sessions( sessions=[sessionpath], layout='lb_kinetics_web', model_normaldata=model_normaldata, color_by=color_by, style_by=style_by, backend=pdf_backend, figtitle=f'Kinetics consistency for {sessiondir}', legend_type=legend_type, legend=False, ) # torso consistency fig_torso_kinematics_cons = None if pages['TorsoKinematicsCons']: logger.debug('creating torso kinematics consistency plot') fig_torso_kinematics_cons = _plot_sessions( sessions=[sessionpath], layout='torso', model_normaldata=model_normaldata, color_by=color_by, style_by=style_by, backend=pdf_backend, figtitle=f'Torso kinematics consistency for {sessiondir}', legend_type=legend_type, legend=False, ) # musclelen consistency fig_musclelen_cons = None if pages['MuscleLenCons']: logger.debug('creating muscle length consistency plot') fig_musclelen_cons = _plot_sessions( sessions=[sessionpath], layout='musclelen', color_by=color_by, style_by=style_by, model_normaldata=model_normaldata, backend=pdf_backend, figtitle=f'Muscle length consistency for {sessiondir}', legend_type=legend_type, legend=False, ) # EMG consistency fig_emg_cons = None if do_emg_consistency: logger.debug('creating EMG consistency plot') fig_emg_cons = _plot_sessions( sessions=[sessionpath], layout='std_emg', color_by=color_by, style_by=style_by, figtitle=f'EMG consistency for {sessiondir}', legend_type=legend_type, legend=False, backend=pdf_backend, ) # EMG consistency, back muscles fig_back_emg_cons = None if pages['BackEMGCons']: logger.debug('creating EMG consistency plot') fig_back_emg_cons = _plot_sessions( sessions=[sessionpath], layout='back_emg', color_by=color_by, style_by=style_by, figtitle=f'EMG back muscles consistency for {sessiondir}', legend_type=legend_type, legend=False, backend=pdf_backend, ) # average plots, R/L fig_kin_avg = None if pages['KinAverage']: fig_kin_avg = _plot_session_average( sessionpath, model_normaldata=model_normaldata, backend=pdf_backend, ) # prep for extracted values if needed if pages['Extracted'] or write_extracted: vardefs_dict = dict(cfg.report.vardefs) allvars = [ vardef[0] for vardefs in vardefs_dict.values() for vardef in vardefs ] from_models = set(models.model_from_var(var) for var in allvars) curve_vals = { sessionpath.name: stats._trials_extract_values(tagged_trials, from_models=from_models) } # tables of curve extracted values figs_extracted = list() if pages['Extracted']: logger.debug('plotting curve extracted values') for title, vardefs in vardefs_dict.items(): fig = _plot_extracted_table_plotly(curve_vals, vardefs) fig.tight_layout() fig.set_dpi(300) fig.suptitle(f'Curve extracted values: {title}') figs_extracted.append(fig) # save the pdf file logger.debug(f'creating multipage pdf {pdfpath}') with PdfPages(pdfpath) as pdf: _savefig(pdf, fig_title) _savefig(pdf, fig_vel, header) _savefig(pdf, fig_timedist_avg, header) _savefig(pdf, fig_kinematics_cons, header) _savefig(pdf, fig_torso_kinematics_cons, header) _savefig(pdf, fig_kinetics_cons, header) _savefig(pdf, fig_musclelen_cons, header, footer_musclelen) _savefig(pdf, fig_emg_cons, header) _savefig(pdf, fig_back_emg_cons, header) _savefig(pdf, fig_kin_avg, header) for fig in figs_extracted: _savefig(pdf, fig, header) # save the time-distance parameters into a text file if write_timedist: _timedist_txt = _session_analysis_text(sessionpath) timedist_txt_file = sessiondir + '_time_distance.txt' timedist_txt_path = destdir / timedist_txt_file with io.open(timedist_txt_path, 'w', encoding='utf8') as f: logger.debug( f'writing timedist text data into {timedist_txt_path}') f.write(_timedist_txt) # save the curve extraced values into a text file if write_extracted: extracted_txt = '\n'.join( _curve_extracted_text(curve_vals, vardefs_dict)) extracted_txt_file = sessiondir + '_curve_values.txt' extracted_txt_path = destdir / extracted_txt_file with io.open(extracted_txt_path, 'w', encoding='utf8') as f: logger.debug( f'writing extracted text data into {extracted_txt_path}') f.write(extracted_txt) return f'Created {pdfpath}'
def create_report(sessionpath, info=None, pages=None, destdir=None): """Create the pdf report and save in session directory""" if info is None: info = defaultdict(lambda: '') fullname = info['fullname'] or '' hetu = info['hetu'] or '' session_description = info['session_description'] or '' if pages is None: pages = defaultdict(lambda: True) # default: do all plots elif not any(pages.values()): raise ValueError('No pages to print') do_emg_consistency = True session_root, sessiondir = op.split(sessionpath) patient_code = op.split(session_root)[1] if destdir is None: destdir = sessionpath pdfname = sessiondir + '.pdf' pdfpath = op.join(destdir, pdfname) tagged_trials = sessionutils.get_c3ds( sessionpath, tags=cfg.eclipse.tags, trial_type='dynamic' ) if not tagged_trials: raise GaitDataError('No tagged trials found in %s' % sessiondir) trials = (trial.Trial(t) for t in tagged_trials) has_kinetics = any(c.on_forceplate for t in trials for c in t.cycles) session_t = sessionutils.get_session_date(sessionpath) logger.debug('session timestamp: %s', session_t) age = age_from_hetu(hetu, session_t) if hetu else None model_normaldata = normaldata.read_session_normaldata(sessionpath) # make header page # timestr = time.strftime('%d.%m.%Y') # current time, not currently used title_txt = 'HUS Liikelaboratorio\n' title_txt += u'Kävelyanalyysin tulokset\n' title_txt += '\n' title_txt += u'Nimi: %s\n' % fullname title_txt += u'Henkilötunnus: %s\n' % (hetu if hetu else 'ei tiedossa') title_txt += u'Ikä mittaushetkellä: %s\n' % ( '%d vuotta' % age if age else 'ei tiedossa' ) title_txt += u'Mittaus: %s\n' % sessiondir if session_description: title_txt += u'Kuvaus: %s\n' % session_description title_txt += u'Mittauksen pvm: %s\n' % session_t.strftime('%d.%m.%Y') title_txt += u'Liikelaboratorion potilaskoodi: %s\n' % patient_code fig_title = _make_text_fig(title_txt) header = u'Nimi: %s Henkilötunnus: %s' % (fullname, hetu) musclelen_ndata = normaldata.normaldata_age(age) footer_musclelen = ( u' Normaalidata: %s' % musclelen_ndata if musclelen_ndata else u'' ) color_by = {'model': 'context', 'emg': 'trial'} style_by = {'model': None} # trial velocity plot fig_vel = None if pages['TrialVelocity']: logger.debug('creating velocity plot') fig_vel = plot_trial_velocities(sessionpath, backend=pdf_backend) # time-distance average fig_timedist_avg = None if pages['TimeDistAverage']: logger.debug('creating time-distance plot') fig_timedist_avg = do_session_average_plot(sessionpath, backend=pdf_backend) # time-dist text _timedist_txt = session_analysis_text(sessionpath) # for next 2 plots, disable the legends (too many cycles) # kin consistency fig_kinematics_cons = None if pages['KinematicsCons']: logger.debug('creating kinematics consistency plot') fig_kinematics_cons = plot_sessions( sessions=[sessionpath], layout_name='lb_kinematics', model_normaldata=model_normaldata, color_by=color_by, style_by=style_by, backend=pdf_backend, figtitle='Kinematics consistency for %s' % sessiondir, legend=False, ) # kinetics consistency fig_kinetics_cons = None if pages['KineticsCons'] and has_kinetics: logger.debug('creating kinetics consistency plot') fig_kinetics_cons = plot_sessions( sessions=[sessionpath], layout_name='lb_kinetics', model_normaldata=model_normaldata, color_by=color_by, style_by=style_by, backend=pdf_backend, figtitle='Kinetics consistency for %s' % sessiondir, legend=False, ) # musclelen consistency fig_musclelen_cons = None if pages['MuscleLenCons']: logger.debug('creating muscle length consistency plot') fig_musclelen_cons = plot_sessions( sessions=[sessionpath], layout_name='musclelen', color_by=color_by, style_by=style_by, model_normaldata=model_normaldata, backend=pdf_backend, figtitle='Muscle length consistency for %s' % sessiondir, legend=False, ) # EMG consistency fig_emg_cons = None if do_emg_consistency: logger.debug('creating EMG consistency plot') fig_emg_cons = plot_sessions( sessions=[sessionpath], layout_name='std_emg', color_by=color_by, style_by=style_by, figtitle='EMG consistency for %s' % sessiondir, legend=False, backend=pdf_backend, ) # average plots, R/L fig_kin_avg = None if pages['KinAverage']: fig_kin_avg = plot_session_average( sessionpath, model_normaldata=model_normaldata, backend=pdf_backend ) logger.debug('creating multipage pdf %s' % pdfpath) with PdfPages(pdfpath) as pdf: _savefig(pdf, fig_title) _savefig(pdf, fig_vel, header) _savefig(pdf, fig_timedist_avg, header) _savefig(pdf, fig_kinematics_cons, header) _savefig(pdf, fig_kinetics_cons, header) _savefig(pdf, fig_musclelen_cons, header, footer_musclelen) _savefig(pdf, fig_emg_cons, header) _savefig(pdf, fig_kin_avg, header) timedist_txt_file = sessiondir + '_time_distance.txt' timedist_txt_path = op.join(destdir, timedist_txt_file) with io.open(timedist_txt_path, 'w', encoding='utf8') as f: logger.debug('writing timedist text data into %s' % timedist_txt_path) f.write(_timedist_txt)
def dash_report( info=None, sessions=None, tags=None, signals=None, recreate_plots=None, video_only=None, ): """Create a web report dash app. Parameters ---------- info : dict patient info sessions : list list of session dirs tags : list tags for dynamic gait trials signals : ProgressSignals instance of ProgressSignals, used to send progress updates across threads recreate_plots : bool force recreation of report video_only : bool Create a video-only report. C3D data will not be read. """ if recreate_plots is None: recreate_plots = False if video_only is None: video_only = False # relative width of left panel (1-12) # 3-session comparison uses narrower video panel # LEFT_WIDTH = 8 if len(sessions) == 3 else 7 LEFT_WIDTH = 8 VIDS_TOTAL_HEIGHT = 88 # % of browser window height if len(sessions) < 1 or len(sessions) > 3: raise ValueError('Need a list of one to three sessions') is_comparison = len(sessions) > 1 report_name = _report_name(sessions) info = info or sessionutils.default_info() # tags for dynamic trials # if doing a comparison, pick representative trials only dyn_tags = tags or (cfg.eclipse.repr_tags if is_comparison else cfg.eclipse.tags) # this tag will be shown in the menu for static trials static_tag = 'Static' # get the camera labels # reduce to a set, since there may be several labels for given id camera_labels = set(cfg.general.camera_labels.values()) # add camera labels for overlay videos # XXX: may cause trouble if labels already contain the string 'overlay' camera_labels_overlay = [lbl + ' overlay' for lbl in camera_labels] camera_labels.update(camera_labels_overlay) # build dict of videos for given tag / camera label # videos will be listed in session order vid_urls = dict() all_tags = dyn_tags + [static_tag] + cfg.eclipse.video_tags for tag in all_tags: vid_urls[tag] = dict() for camera_label in camera_labels: vid_urls[tag][camera_label] = list() # collect all session enfs into dict enfs = {session: dict() for session in sessions} data_enfs = list() # enfs that are used for data signals.progress.emit('Collecting trials...', 0) for session in sessions: if signals.canceled: return None enfs[session] = dict(dynamic=dict(), static=dict(), vid_only=dict()) # collect dynamic trials for each tag for tag in dyn_tags: dyns = sessionutils.get_enfs(session, tags=tag, trial_type='dynamic') if len(dyns) > 1: logger.warning('multiple tagged trials (%s) for %s' % (tag, session)) dyn_trial = dyns[-1:] enfs[session]['dynamic'][tag] = dyn_trial # may be empty list if dyn_trial: data_enfs.extend(dyn_trial) # require at least one dynamic trial for each session if not any(enfs[session]['dynamic'][tag] for tag in dyn_tags): raise GaitDataError('No tagged dynamic trials found for %s' % (session)) # collect static trial (at most 1 per session) # -prefer enfs that have a corresponding c3d file, even for a video-only report # (so that the same static gets used for both video-only and full reports) # -prefer the newest enf file sts = sessionutils.get_enfs(session, trial_type='static') for st in reversed(sts): # newest first st_c3d = sessionutils.enf_to_trialfile(st, '.c3d') if op.isfile(st_c3d): static_trial = [st] break else: # no c3ds were found - just pick the latest static trial static_trial = sts[-1:] enfs[session]['static'][static_tag] = static_trial if static_trial: data_enfs.extend(static_trial) # collect video-only dynamic trials for tag in cfg.eclipse.video_tags: dyn_vids = sessionutils.get_enfs(session, tags=tag) if len(dyn_vids) > 1: logger.warning( 'multiple tagged video-only trials (%s) for %s' % (tag, session) ) enfs[session]['vid_only'][tag] = dyn_vids[-1:] # collect all videos for given tag and camera, listed in session order signals.progress.emit('Finding videos...', 0) for session in sessions: for trial_type in enfs[session]: for tag, enfs_this in enfs[session][trial_type].items(): if enfs_this: enf = enfs_this[0] # only one enf per tag and session for camera_label in camera_labels: overlay = 'overlay' in camera_label real_camera_label = ( camera_label[: camera_label.find(' overlay')] if overlay else camera_label ) c3d = enf_to_trialfile(enf, 'c3d') vids_this = videos.get_trial_videos( c3d, camera_label=real_camera_label, vid_ext='.ogv', overlay=overlay, ) if vids_this: vid = vids_this[0] url = '/static/%s' % op.split(vid)[1] vid_urls[tag][camera_label].append(url) # build dcc.Dropdown options list for cameras and tags # list cameras which have videos for any tag opts_cameras = list() for camera_label in sorted(camera_labels): if any(vid_urls[tag][camera_label] for tag in all_tags): opts_cameras.append({'label': camera_label, 'value': camera_label}) # list tags which have videos for any camera opts_tags = list() for tag in all_tags: if any(vid_urls[tag][camera_label] for camera_label in camera_labels): opts_tags.append({'label': '%s' % tag, 'value': tag}) # add null entry in case we got no videos at all if not opts_tags: opts_tags.append({'label': 'No videos', 'value': 'no videos', 'disabled': True}) # this whole section is only needed if we have c3d data if not video_only: # see whether we can load report figures from disk data_c3ds = [enf_to_trialfile(enffile, 'c3d') for enffile in data_enfs] digest = numutils.files_digest(data_c3ds) logger.debug('report data digest: %s' % digest) # data is always saved into alphabetically first session data_dir = sorted(sessions)[0] data_fn = op.join(data_dir, 'web_report_%s.dat' % digest) if op.isfile(data_fn) and not recreate_plots: logger.debug('loading saved report data from %s' % data_fn) signals.progress.emit('Loading saved report...', 0) with open(data_fn, 'rb') as f: saved_report_data = pickle.load(f) else: saved_report_data = dict() logger.debug('no saved data found or recreate forced') # make Trial instances for all dynamic and static trials # this is currently needed even if saved report is used trials_dyn = list() trials_static = list() _trials_avg = dict() for session in sessions: _trials_avg[session] = list() for tag in dyn_tags: if enfs[session]['dynamic'][tag]: if signals.canceled: return None c3dfile = enf_to_trialfile(enfs[session]['dynamic'][tag][0], 'c3d') tri = Trial(c3dfile) trials_dyn.append(tri) _trials_avg[session].append(tri) if enfs[session]['static'][static_tag]: c3dfile = enf_to_trialfile(enfs[session]['static']['Static'][0], 'c3d') tri = Trial(c3dfile) trials_static.append(tri) emg_layout = None tibial_torsion = dict() # stuff that's needed to (re)create the figures if not saved_report_data: age = None if info['hetu'] is not None: # compute subject age at session time session_dates = [ sessionutils.get_session_date(session) for session in sessions ] ages = [age_from_hetu(info['hetu'], d) for d in session_dates] age = max(ages) # create Markdown text for patient info patient_info_text = '##### %s ' % ( info['fullname'] if info['fullname'] else 'Name unknown' ) if info['hetu']: patient_info_text += '(%s)' % info['hetu'] patient_info_text += '\n\n' # if age: # patient_info_text += 'Age at measurement time: %d\n\n' % age if info['report_notes']: patient_info_text += info['report_notes'] model_normaldata = dict() avg_trials = list() # load normal data for gait models signals.progress.emit('Loading normal data...', 0) for fn in cfg.general.normaldata_files: ndata = normaldata.read_normaldata(fn) model_normaldata.update(ndata) if age is not None: age_ndata_file = normaldata.normaldata_age(age) if age_ndata_file: age_ndata = normaldata.read_normaldata(age_ndata_file) model_normaldata.update(age_ndata) # make average trials for each session avg_trials = [ AvgTrial.from_trials(_trials_avg[session], sessionpath=session) for session in sessions ] # read some extra data from trials and create supplementary data for tr in trials_dyn: # read tibial torsion for each trial and make supplementary traces # these will only be shown for KneeAnglesZ (knee rotation) variable tors = dict() tors['R'], tors['L'] = ( tr.subj_params['RTibialTorsion'], tr.subj_params['LTibialTorsion'], ) if tors['R'] is None or tors['L'] is None: logger.warning( 'could not read tibial torsion values from %s' % tr.trialname ) continue # include torsion info for all cycles; this is useful when plotting # isolated cycles max_cycles = cfg.plot.max_cycles['model'] cycs = tr.get_cycles(cfg.plot.default_cycles['model'])[:max_cycles] for cyc in cycs: tibial_torsion[cyc] = dict() for ctxt in tors: var_ = ctxt + 'KneeAnglesZ' tibial_torsion[cyc][var_] = dict() # x = % of gait cycle tibial_torsion[cyc][var_]['t'] = np.arange(101) # static tibial torsion value as function of x # convert radians -> degrees tibial_torsion[cyc][var_]['data'] = ( np.ones(101) * tors[ctxt] / np.pi * 180 ) tibial_torsion[cyc][var_]['label'] = 'Tib. tors. (%s) % s' % ( ctxt, tr.trialname, ) # in EMG layout, keep chs that are active in any of the trials signals.progress.emit('Reading EMG data', 0) try: emgs = [tr.emg for tr in trials_dyn] emg_layout = layouts.rm_dead_channels_multitrial( emgs, cfg.layouts.std_emg ) if not emg_layout: emg_layout = 'disabled' except GaitDataError: emg_layout = 'disabled' # define layouts # FIXME: should be definable in config _layouts = OrderedDict( [ ('Patient info', 'patient_info'), ('Kinematics', cfg.layouts.lb_kinematics), ('Kinematics average', 'kinematics_average'), ('Static kinematics', 'static_kinematics'), ('Static EMG', 'static_emg'), ('Kinematics + kinetics', cfg.layouts.lb_kin_web), ('Kinetics', cfg.layouts.lb_kinetics_web), ('EMG', emg_layout), ('Kinetics-EMG left', cfg.layouts.lb_kinetics_emg_l), ('Kinetics-EMG right', cfg.layouts.lb_kinetics_emg_r), ('Muscle length', cfg.layouts.musclelen), ('Torso kinematics', cfg.layouts.torso), ('Time-distance variables', 'time_dist'), ] ) # pick desired single variables from model and append # Py2: dict merge below can be done more elegantly once Py2 is dropped pig_singlevars_ = models.pig_lowerbody.varlabels_noside.copy() pig_singlevars_.update(models.pig_lowerbody_kinetics.varlabels_noside) pig_singlevars = sorted(pig_singlevars_.items(), key=lambda item: item[1]) singlevars = OrderedDict( [(varlabel, [[var]]) for var, varlabel in pig_singlevars] ) _layouts.update(singlevars) # add supplementary data for normal layouts supplementary_default = dict() supplementary_default.update(tibial_torsion) dd_opts_multi_upper = list() dd_opts_multi_lower = list() # loop through the layouts, create or load figures report_data_new = dict() for k, (label, layout) in enumerate(_layouts.items()): signals.progress.emit('Creating plot: %s' % label, 100 * k / len(_layouts)) if signals.canceled: return None # for comparison report, include session info in plot legends and # use session specific line style emg_mode = None if is_comparison: legend_type = cfg.web_report.comparison_legend_type style_by = cfg.web_report.comparison_style_by color_by = cfg.web_report.comparison_color_by if cfg.web_report.comparison_emg_rms: emg_mode = 'rms' else: legend_type = cfg.web_report.legend_type style_by = cfg.web_report.style_by color_by = cfg.web_report.color_by try: if saved_report_data: logger.debug('loading %s from saved report data' % label) if label not in saved_report_data: # will be caught, resulting in empty menu item raise RuntimeError else: figdata = saved_report_data[label] else: logger.debug('creating figure data for %s' % label) if isinstance(layout, basestring): # handle special layout codes if layout == 'time_dist': figdata = timedist.do_comparison_plot( sessions, big_fonts=True, backend='plotly' ) elif layout == 'patient_info': figdata = patient_info_text elif layout == 'static_kinematics': layout_ = cfg.layouts.lb_kinematics figdata = plot_trials( trials_static, layout_, model_normaldata=False, cycles='unnormalized', legend_type='short_name_with_cyclename', style_by=style_by, color_by=color_by, big_fonts=True, ) elif layout == 'static_emg': layout_ = cfg.layouts.std_emg figdata = plot_trials( trials_static, layout_, model_normaldata=False, cycles='unnormalized', legend_type='short_name_with_cyclename', style_by=style_by, color_by=color_by, big_fonts=True, ) elif layout == 'kinematics_average': layout_ = cfg.layouts.lb_kinematics figdata = plot_trials( avg_trials, layout_, style_by=style_by, color_by=color_by, model_normaldata=model_normaldata, big_fonts=True, ) elif layout == 'disabled': # will be caught, resulting in empty menu item raise RuntimeError else: # unrecognized layout; this is not caught by us raise Exception('Unrecognized layout: %s' % layout) else: # regular gaitutils layout figdata = plot_trials( trials_dyn, layout, model_normaldata=model_normaldata, emg_mode=emg_mode, legend_type=legend_type, style_by=style_by, color_by=color_by, supplementary_data=supplementary_default, big_fonts=True, ) # save newly created data if not saved_report_data: if isinstance(figdata, go.Figure): # serialize go.Figures before saving # this makes them much faster for pickle to handle # apparently dcc.Graph can eat the serialized json directly, # so no need to do anything on load figdata_ = figdata.to_plotly_json() else: figdata_ = figdata report_data_new[label] = figdata_ # make the upper and lower panel graphs from figdata, depending # on data type def _is_base64(s): try: return base64.b64encode(base64.b64decode(s)) == s except Exception: return False # this is for old style timedist figures that were in base64 # encoded svg if layout == 'time_dist' and _is_base64(figdata): graph_upper = html.Img( src='data:image/svg+xml;base64,{}'.format(figdata), id='gaitgraph%d' % k, style={'height': '100%'}, ) graph_lower = html.Img( src='data:image/svg+xml;base64,{}'.format(figdata), id='gaitgraph%d' % (len(_layouts) + k), style={'height': '100%'}, ) elif layout == 'patient_info': graph_upper = dcc.Markdown(figdata) graph_lower = graph_upper else: # plotly fig -> dcc.Graph graph_upper = dcc.Graph( figure=figdata, id='gaitgraph%d' % k, style={'height': '100%'} ) graph_lower = dcc.Graph( figure=figdata, id='gaitgraph%d' % (len(_layouts) + k), style={'height': '100%'}, ) dd_opts_multi_upper.append({'label': label, 'value': graph_upper}) dd_opts_multi_lower.append({'label': label, 'value': graph_lower}) except (RuntimeError, GaitDataError) as e: # could not create a figure logger.warning(u'failed to create figure for %s: %s' % (label, e)) # insert the menu options but make them disabled dd_opts_multi_upper.append( {'label': label, 'value': label, 'disabled': True} ) dd_opts_multi_lower.append( {'label': label, 'value': label, 'disabled': True} ) continue opts_multi, mapper_multi_upper = _make_dropdown_lists(dd_opts_multi_upper) opts_multi, mapper_multi_lower = _make_dropdown_lists(dd_opts_multi_lower) # if plots were newly created, save them to disk if not saved_report_data: logger.debug('saving report data into %s' % data_fn) signals.progress.emit('Saving report data to disk...', 99) with open(data_fn, 'wb') as f: pickle.dump(report_data_new, f, protocol=-1) def make_left_panel(split=True, upper_value='Kinematics', lower_value='Kinematics'): """Helper to make the left graph panels. If split=True, make two stacked panels""" # the upper graph & dropdown items = [ dcc.Dropdown( id='dd-vars-upper-multi', clearable=False, options=opts_multi, value=upper_value, ), html.Div( id='div-upper', style={'height': '50%'} if split else {'height': '100%'} ), ] if split: # add the lower one items.extend( [ dcc.Dropdown( id='dd-vars-lower-multi', clearable=False, options=opts_multi, value=lower_value, ), html.Div(id='div-lower', style={'height': '50%'}), ] ) return html.Div(items, style={'height': '80vh'}) # create the app app = dash.Dash('gaitutils') # use local packaged versions of JavaScript libs etc. (no internet needed) app.css.config.serve_locally = True app.scripts.config.serve_locally = True app.title = _report_name(sessions, long_name=False) # this is for generating the classnames in the CSS num2words = { 1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'six', 7: 'seven', 8: 'eight', 9: 'nine', 10: 'ten', 11: 'eleven', 12: 'twelve', } classname_left = '%s columns' % num2words[LEFT_WIDTH] classname_right = '%s columns' % num2words[12 - LEFT_WIDTH] if video_only: app.layout = html.Div( [ # row html.Div( [ # single main div dcc.Dropdown( id='dd-camera', clearable=False, options=opts_cameras, value='Front camera', ), dcc.Dropdown( id='dd-video-tag', clearable=False, options=opts_tags, value=opts_tags[0]['value'], ), html.Div(id='videos'), ], className='12 columns', ), ], className='row', ) else: # the two-panel layout with graphs and video app.layout = html.Div( [ # row html.Div( [ # left main div html.H6(report_name), dcc.Checklist( id='split-left', options=[{'label': 'Two panels', 'value': 'split'}], value=[], ), # need split=True so that both panels are in initial layout html.Div(make_left_panel(split=True), id='div-left-main'), ], className=classname_left, ), html.Div( [ # right main div dcc.Dropdown( id='dd-camera', clearable=False, options=opts_cameras, value='Front camera', ), dcc.Dropdown( id='dd-video-tag', clearable=False, options=opts_tags, value=opts_tags[0]['value'], ), html.Div(id='videos'), ], className=classname_right, ), ], className='row', ) @app.callback( Output('div-left-main', 'children'), [Input('split-left', 'value')], [State('dd-vars-upper-multi', 'value')], ) def update_panel_layout(split_panels, upper_value): split = 'split' in split_panels return make_left_panel(split, upper_value=upper_value) @app.callback( Output('div-upper', 'children'), [Input('dd-vars-upper-multi', 'value')] ) def update_contents_upper_multi(sel_var): return mapper_multi_upper[sel_var] @app.callback( Output('div-lower', 'children'), [Input('dd-vars-lower-multi', 'value')] ) def update_contents_lower_multi(sel_var): return mapper_multi_lower[sel_var] def _video_elem(title, url, max_height): """Create a video element with title""" if not url: return 'No video found' vid_el = html.Video( src=url, controls=True, loop=True, preload='auto', title=title, style={'max-height': max_height, 'max-width': '100%'}, ) # return html.Div([title, vid_el]) # titles above videos return vid_el @app.callback( Output('videos', 'children'), [Input('dd-camera', 'value'), Input('dd-video-tag', 'value')], ) def update_videos(camera_label, tag): """Create a list of video divs according to camera and tag selection""" if tag == 'no videos': return 'No videos found' vid_urls_ = vid_urls[tag][camera_label] if not vid_urls_: return 'No videos found' nvids = len(vid_urls_) max_height = str(int(VIDS_TOTAL_HEIGHT / nvids)) + 'vh' return [_video_elem('video', url, max_height) for url in vid_urls_] # add a static route to serve session data. be careful outside firewalls @app.server.route('/static/<resource>') def serve_file(resource): for session in sessions: filepath = op.join(session, resource) if op.isfile(filepath): return flask.send_from_directory(session, resource) return None # add shutdown method - see http://flask.pocoo.org/snippets/67/ @app.server.route('/shutdown') def shutdown(): logger.debug('Received shutdown request...') _shutdown_server() return 'Server shutting down...' # inject some info of our own app._gaitutils_report_name = report_name # XXX: the Flask app ends up with a logger by the name of 'gaitutils', which has a default # stderr handler. since logger hierarchy corresponds to package hierarchy, # this creates a bug where all gaitutils package loggers propagate their messages into # the app logger and they get shown multiple times. as a dirty fix, we disable the # handlers for the app logger (they still get shown since they propagate to the root logger) app.logger.handlers = [] return app