예제 #1
0
def test_umap_data_formats(input_type, should_downcast, nrows, n_feats, name):

    dtype = np.float32 if not should_downcast else np.float64
    n_samples = nrows
    n_feats = n_feats

    if name == 'digits':
        # use the digits dataset for unit test
        digits = datasets.load_digits(n_class=9)
        X = digits["data"].astype(dtype)

    else:
        X, y = datasets.make_blobs(n_samples=n_samples,
                                   n_features=n_feats,
                                   random_state=0)

    umap = cuUMAP(n_neighbors=3, n_components=2, verbose=False)

    if input_type == 'dataframe':
        X_pd = pd.DataFrame({'fea%d' % i: X[0:, i] for i in range(X.shape[1])})
        X_cudf = cudf.DataFrame.from_pandas(X_pd)
        embeds = umap.fit_transform(X_cudf, convert_dtype=True)
        assert type(embeds) == cudf.DataFrame

    else:
        embeds = umap.fit_transform(X)
        assert type(embeds) == np.ndarray
예제 #2
0
def test_umap_data_formats(input_type, should_downcast, nrows, n_feats, name):

    dtype = np.float32 if not should_downcast else np.float64
    n_samples = nrows
    n_feats = n_feats

    if name == 'digits':
        # use the digits dataset for unit test
        digits = datasets.load_digits(n_class=9)
        X = digits["data"].astype(dtype)

    else:
        X, y = datasets.make_blobs(n_samples=n_samples,
                                   n_features=n_feats,
                                   random_state=0)

    umap = cuUMAP(n_neighbors=3, n_components=2, verbose=False)

    embeds = umap.fit_transform(X)
    assert type(embeds) == np.ndarray
예제 #3
0
    if enable_gpu:
        kmeans_float = cuml.KMeans(n_clusters=n_clusters)
    else:
        kmeans_float = sklearn.cluster.KMeans(n_clusters=n_clusters)
    kmeans_float.fit(df_fingerprints)
    print('Runtime Kmeans time (hh:mm:ss.ms) {}'.format(datetime.now() -
                                                        task_start_time))

    # UMAP
    task_start_time = datetime.now()
    if enable_gpu:
        umap = cuml.UMAP(n_neighbors=100, a=1.0, b=1.0, learning_rate=1.0)
    else:
        umap = umap.UMAP()

    Xt = umap.fit_transform(df_fingerprints)
    print('Runtime UMAP time (hh:mm:ss.ms) {}'.format(datetime.now() -
                                                      task_start_time))

    if enable_gpu:
        df_fingerprints.add_column('x', Xt[0].to_array())
        df_fingerprints.add_column('y', Xt[1].to_array())
        df_fingerprints.add_column('cluster', kmeans_float.labels_)
    else:
        df_fingerprints['x'] = Xt[:, 0]
        df_fingerprints['y'] = Xt[:, 1]
        df_fingerprints['cluster'] = kmeans_float.labels_

    # start dash
    v = chemvisualize.ChemVisualization(df_fingerprints.copy(),
                                        n_clusters,
예제 #4
0
def visualize_features(classes, problem_type, curdir, default_features,
                       balance_data, test_size):

    # make features into label encoder here
    features, feature_labels, class_labels = get_features(
        classes, problem_type, default_features, balance_data)

    # now preprocess features for all the other plots
    os.chdir(curdir)
    le = preprocessing.LabelEncoder()
    le.fit(class_labels)
    tclass_labels = le.transform(class_labels)

    # process features to help with clustering
    se = preprocessing.StandardScaler()
    t_features = se.fit_transform(features)

    X_train, X_test, y_train, y_test = train_test_split(features,
                                                        tclass_labels,
                                                        test_size=test_size,
                                                        random_state=42)

    # print(len(features))
    # print(len(feature_labels))
    # print(len(class_labels))
    # print(class_labels)

    # GET TRAINING DATA DURING MODELING PROCESS
    ##################################
    # get filename
    # csvfile=''
    # print(classes)
    # for i in range(len(classes)):
    # 	csvfile=csvfile+classes[i]+'_'

    # get training and testing data for later
    # try:
    # print('loading training files...')
    # X_train=pd.read_csv(prev_dir(curdir)+'/models/'+csvfile+'train.csv')
    # y_train=X_train['class_']
    # X_train.drop(['class_'], axis=1)
    # X_test=pd.read_csv(prev_dir(curdir)+'/models/'+csvfile+'test.csv')
    # y_test=X_test['class_']
    # X_test.drop(['class_'], axis=1)
    # y_train=le.inverse_transform(y_train)
    # y_test=le.inverse_transform(y_test)
    # except:
    # print('error loading in training files, making new test data')

    # Visualize each class (quick plot)
    ##################################
    visualization_dir = 'visualization_session'
    try:
        os.mkdir(visualization_dir)
        os.chdir(visualization_dir)
    except:
        shutil.rmtree(visualization_dir)
        os.mkdir(visualization_dir)
        os.chdir(visualization_dir)

    objects = tuple(set(class_labels))
    y_pos = np.arange(len(objects))
    performance = list()
    for i in range(len(objects)):
        performance.append(class_labels.count(objects[i]))

    plt.bar(y_pos, performance, align='center', alpha=0.5)
    plt.xticks(y_pos, objects)
    plt.xticks(rotation=90)
    plt.title('Counts per class')
    plt.ylabel('Count')
    plt.xlabel('Class')
    plt.tight_layout()
    plt.savefig('classes.png')
    plt.close()

    # set current directory
    curdir = os.getcwd()

    # ##################################
    # # CLUSTERING!!!
    # ##################################

    ##################################
    # Manifold type options
    ##################################
    '''
		"lle"
		Locally Linear Embedding (LLE) uses many local linear decompositions to preserve globally non-linear structures.
		"ltsa"
		LTSA LLE: local tangent space alignment is similar to LLE in that it uses locality to preserve neighborhood distances.
		"hessian"
		Hessian LLE an LLE regularization method that applies a hessian-based quadratic form at each neighborhood
		"modified"
		Modified LLE applies a regularization parameter to LLE.
		"isomap"
		Isomap seeks a lower dimensional embedding that maintains geometric distances between each instance.
		"mds"
		MDS: multi-dimensional scaling uses similarity to plot points that are near to each other close in the embedding.
		"spectral"
		Spectral Embedding a discrete approximation of the low dimensional manifold using a graph representation.
		"tsne" (default)
		t-SNE: converts the similarity of points into probabilities then uses those probabilities to create an embedding.
	'''
    os.mkdir('clustering')
    os.chdir('clustering')

    # tSNE
    plt.figure()
    viz = Manifold(manifold="tsne", classes=set(classes))
    viz.fit_transform(np.array(features), tclass_labels)
    viz.poof(outpath="tsne.png")
    plt.close()
    # os.system('open tsne.png')
    # viz.show()

    # PCA
    plt.figure()
    visualizer = PCADecomposition(scale=True, classes=set(classes))
    visualizer.fit_transform(np.array(features), tclass_labels)
    visualizer.poof(outpath="pca.png")
    plt.close()
    # os.system('open pca.png')

    # spectral embedding
    plt.figure()
    viz = Manifold(manifold="spectral", classes=set(classes))
    viz.fit_transform(np.array(features), tclass_labels)
    viz.poof(outpath="spectral.png")
    plt.close()

    # lle embedding
    plt.figure()
    viz = Manifold(manifold="lle", classes=set(classes))
    viz.fit_transform(np.array(features), tclass_labels)
    viz.poof(outpath="lle.png")
    plt.close()

    # ltsa
    # plt.figure()
    # viz = Manifold(manifold="ltsa", classes=set(classes))
    # viz.fit_transform(np.array(features), tclass_labels)
    # viz.poof(outpath="ltsa.png")
    # plt.close()

    # hessian
    # plt.figure()
    # viz = Manifold(manifold="hessian", method='dense', classes=set(classes))
    # viz.fit_transform(np.array(features), tclass_labels)
    # viz.poof(outpath="hessian.png")
    # plt.close()

    # modified
    plt.figure()
    viz = Manifold(manifold="modified", classes=set(classes))
    viz.fit_transform(np.array(features), tclass_labels)
    viz.poof(outpath="modified.png")
    plt.close()

    # isomap
    plt.figure()
    viz = Manifold(manifold="isomap", classes=set(classes))
    viz.fit_transform(np.array(features), tclass_labels)
    viz.poof(outpath="isomap.png")
    plt.close()

    # mds
    plt.figure()
    viz = Manifold(manifold="mds", classes=set(classes))
    viz.fit_transform(np.array(features), tclass_labels)
    viz.poof(outpath="mds.png")
    plt.close()

    # spectral
    plt.figure()
    viz = Manifold(manifold="spectral", classes=set(classes))
    viz.fit_transform(np.array(features), tclass_labels)
    viz.poof(outpath="spectral.png")
    plt.close()

    # UMAP embedding
    plt.figure()
    umap = UMAPVisualizer(metric='cosine',
                          classes=set(classes),
                          title="UMAP embedding")
    umap.fit_transform(np.array(features), class_labels)
    umap.poof(outpath="umap.png")
    plt.close()

    # alternative UMAP
    # import umap.plot
    # plt.figure()
    # mapper = umap.UMAP().fit(np.array(features))
    # fig=umap.plot.points(mapper, labels=np.array(tclass_labels))
    # fig = fig.get_figure()
    # fig.tight_layout()
    # fig.savefig('umap2.png')
    # plt.close(fig)

    #################################
    # 	  FEATURE RANKING!!
    #################################
    os.chdir(curdir)
    os.mkdir('feature_ranking')
    os.chdir('feature_ranking')

    # You can get the feature importance of each feature of your dataset
    # by using the feature importance property of the model.
    plt.figure(figsize=(12, 12))
    model = ExtraTreesClassifier()
    model.fit(np.array(features), tclass_labels)
    # print(model.feature_importances_)
    feat_importances = pd.Series(model.feature_importances_,
                                 index=feature_labels[0])
    feat_importances.nlargest(20).plot(kind='barh')
    plt.title('Feature importances (ExtraTrees)', size=16)
    plt.title('Feature importances with %s features' % (str(len(features[0]))))
    plt.tight_layout()
    plt.savefig('feature_importance.png')
    plt.close()
    # os.system('open feature_importance.png')

    # get selected labels for top 20 features
    selectedlabels = list(dict(feat_importances.nlargest(20)))
    new_features, new_labels = restructure_features(selectedlabels, t_features,
                                                    feature_labels[0])
    new_features_, new_labels_ = restructure_features(selectedlabels, features,
                                                      feature_labels[0])

    # Shapiro rank algorithm (1D)
    plt.figure(figsize=(28, 12))
    visualizer = Rank1D(algorithm='shapiro',
                        classes=set(classes),
                        features=new_labels)
    visualizer.fit(np.array(new_features), tclass_labels)
    visualizer.transform(np.array(new_features))
    # plt.tight_layout()
    visualizer.poof(outpath="shapiro.png")
    plt.title('Shapiro plot (top 20 features)', size=16)
    plt.close()
    # os.system('open shapiro.png')
    # visualizer.show()

    # pearson ranking algorithm (2D)
    plt.figure(figsize=(12, 12))
    visualizer = Rank2D(algorithm='pearson',
                        classes=set(classes),
                        features=new_labels)
    visualizer.fit(np.array(new_features), tclass_labels)
    visualizer.transform(np.array(new_features))
    plt.tight_layout()
    visualizer.poof(outpath="pearson.png")
    plt.title('Pearson ranking plot (top 20 features)', size=16)
    plt.close()
    # os.system('open pearson.png')
    # visualizer.show()

    # feature importances with top 20 features for Lasso
    plt.figure(figsize=(12, 12))
    viz = FeatureImportances(Lasso(), labels=new_labels_)
    viz.fit(np.array(new_features_), tclass_labels)
    plt.tight_layout()
    viz.poof(outpath="lasso.png")
    plt.close()

    # correlation plots with feature removal if corr > 0.90
    # https://towardsdatascience.com/feature-selection-correlation-and-p-value-da8921bfb3cf

    # now remove correlated features
    # --> p values
    # --> https://towardsdatascience.com/the-next-level-of-data-visualization-in-python-dd6e99039d5e / https://github.com/WillKoehrsen/Data-Analysis/blob/master/plotly/Plotly%20Whirlwind%20Introduction.ipynb- plotly for correlation heatmap and scatterplot matrix
    # --> https://seaborn.pydata.org/tutorial/distributions.html
    data = new_features
    corr = data.corr()

    plt.figure(figsize=(12, 12))
    fig = sns.heatmap(corr)
    fig = fig.get_figure()
    plt.title('Heatmap with correlated features (top 20 features)', size=16)
    fig.tight_layout()
    fig.savefig('heatmap.png')
    plt.close(fig)

    columns = np.full((corr.shape[0], ), True, dtype=bool)
    for i in range(corr.shape[0]):
        for j in range(i + 1, corr.shape[0]):
            if corr.iloc[i, j] >= 0.9:
                if columns[j]:
                    columns[j] = False
    selected_columns = data.columns[columns]
    data = data[selected_columns]
    corr = data.corr()

    plt.figure(figsize=(12, 12))
    fig = sns.heatmap(corr)
    fig = fig.get_figure()
    plt.title('Heatmap without correlated features (top 20 features)', size=16)
    fig.tight_layout()
    fig.savefig('heatmap_clean.png')
    plt.close(fig)

    # radviz
    # Instantiate the visualizer
    plt.figure(figsize=(12, 12))
    visualizer = RadViz(classes=classes, features=new_labels)
    visualizer.fit(np.array(new_features), tclass_labels)
    visualizer.transform(np.array(new_features))
    visualizer.poof(outpath="radviz.png")
    visualizer.show()
    plt.close()

    # feature correlation plot
    plt.figure(figsize=(28, 12))
    visualizer = feature_correlation(np.array(new_features),
                                     tclass_labels,
                                     labels=new_labels)
    visualizer.poof(outpath="correlation.png")
    visualizer.show()
    plt.tight_layout()
    plt.close()

    os.mkdir('feature_plots')
    os.chdir('feature_plots')

    newdata = new_features_
    newdata['classes'] = class_labels

    for j in range(len(new_labels_)):
        fig = sns.violinplot(x=newdata['classes'], y=newdata[new_labels_[j]])
        fig = fig.get_figure()
        fig.tight_layout()
        fig.savefig('%s_%s.png' % (str(j), new_labels_[j]))
        plt.close(fig)

    os.mkdir('feature_plots_transformed')
    os.chdir('feature_plots_transformed')

    newdata = new_features
    newdata['classes'] = class_labels

    for j in range(len(new_labels)):
        fig = sns.violinplot(x=newdata['classes'], y=newdata[new_labels[j]])
        fig = fig.get_figure()
        fig.tight_layout()
        fig.savefig('%s_%s.png' % (str(j), new_labels[j]))
        plt.close(fig)

    ##################################################
    # PRECISION-RECALL CURVES
    ##################################################

    os.chdir(curdir)
    os.mkdir('model_selection')
    os.chdir('model_selection')

    plt.figure()
    visualizer = precision_recall_curve(GaussianNB(), np.array(features),
                                        tclass_labels)
    visualizer.poof(outpath="precision-recall.png")
    plt.close()

    plt.figure()
    visualizer = roc_auc(LogisticRegression(), np.array(features),
                         tclass_labels)
    visualizer.poof(outpath="roc_curve_train.png")
    plt.close()

    plt.figure()
    visualizer = discrimination_threshold(
        LogisticRegression(multi_class="auto", solver="liblinear"),
        np.array(features), tclass_labels)
    visualizer.poof(outpath="thresholds.png")
    plt.close()

    plt.figure()
    visualizer = residuals_plot(Ridge(),
                                np.array(features),
                                tclass_labels,
                                train_color="maroon",
                                test_color="gold")
    visualizer.poof(outpath="residuals.png")
    plt.close()

    plt.figure()
    visualizer = prediction_error(Lasso(), np.array(features), tclass_labels)
    visualizer.poof(outpath='prediction_error.png')
    plt.close()

    # outlier detection
    plt.figure()
    visualizer = cooks_distance(np.array(features),
                                tclass_labels,
                                draw_threshold=True,
                                linefmt="C0-",
                                markerfmt=",")
    visualizer.poof(outpath='outliers.png')
    plt.close()

    # cluster numbers
    plt.figure()
    visualizer = silhouette_visualizer(
        KMeans(len(set(tclass_labels)), random_state=42), np.array(features))
    visualizer.poof(outpath='siloutte.png')
    plt.close()

    # cluster distance
    plt.figure()
    visualizer = intercluster_distance(
        KMeans(len(set(tclass_labels)), random_state=777), np.array(features))
    visualizer.poof(outpath='cluster_distance.png')
    plt.close()

    # plot percentile of features plot with SVM to see which percentile for features is optimal
    features = preprocessing.MinMaxScaler().fit_transform(features)
    clf = Pipeline([('anova', SelectPercentile(chi2)),
                    ('scaler', StandardScaler()),
                    ('logr', LogisticRegression())])
    score_means = list()
    score_stds = list()
    percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100)

    for percentile in percentiles:
        clf.set_params(anova__percentile=percentile)
        this_scores = cross_val_score(clf, np.array(features), class_labels)
        score_means.append(this_scores.mean())
        score_stds.append(this_scores.std())

    plt.errorbar(percentiles, score_means, np.array(score_stds))
    plt.title(
        'Performance of the LogisticRegression-Anova varying the percent features selected'
    )
    plt.xticks(np.linspace(0, 100, 11, endpoint=True))
    plt.xlabel('Percentile')
    plt.ylabel('Accuracy Score')
    plt.axis('tight')
    plt.savefig('logr_percentile_plot.png')
    plt.close()

    # get PCA
    pca = PCA(random_state=1)
    pca.fit(X_train)
    skplt.decomposition.plot_pca_component_variance(pca)
    plt.savefig('pca_explained_variance.png')
    plt.close()

    # estimators
    rf = RandomForestClassifier()
    skplt.estimators.plot_learning_curve(rf, X_train, y_train)
    plt.title('Learning Curve (Random Forest)')
    plt.savefig('learning_curve.png')
    plt.close()

    # elbow plot
    kmeans = KMeans(random_state=1)
    skplt.cluster.plot_elbow_curve(kmeans,
                                   X_train,
                                   cluster_ranges=range(1, 30),
                                   title='Elbow plot (KMeans clustering)')
    plt.savefig('elbow.png')
    plt.close()

    # KS statistic (only if 2 classes)
    lr = LogisticRegression()
    lr = lr.fit(X_train, y_train)
    y_probas = lr.predict_proba(X_test)
    skplt.metrics.plot_ks_statistic(y_test, y_probas)
    plt.savefig('ks.png')
    plt.close()

    # precision-recall
    nb = GaussianNB()
    nb.fit(X_train, y_train)
    y_probas = nb.predict_proba(X_test)
    skplt.metrics.plot_precision_recall(y_test, y_probas)
    plt.tight_layout()
    plt.savefig('precision-recall.png')
    plt.close()

    ## plot calibration curve
    rf = RandomForestClassifier()
    lr = LogisticRegression()
    nb = GaussianNB()
    svm = LinearSVC()
    dt = DecisionTreeClassifier(random_state=0)
    ab = AdaBoostClassifier(n_estimators=100)
    gb = GradientBoostingClassifier(n_estimators=100,
                                    learning_rate=1.0,
                                    max_depth=1,
                                    random_state=0)
    knn = KNeighborsClassifier(n_neighbors=7)

    rf_probas = rf.fit(X_train, y_train).predict_proba(X_test)
    lr_probas = lr.fit(X_train, y_train).predict_proba(X_test)
    nb_probas = nb.fit(X_train, y_train).predict_proba(X_test)
    # svm_scores = svm.fit(X_train, y_train).predict_proba(X_test)
    dt_scores = dt.fit(X_train, y_train).predict_proba(X_test)
    ab_scores = ab.fit(X_train, y_train).predict_proba(X_test)
    gb_scores = gb.fit(X_train, y_train).predict_proba(X_test)
    knn_scores = knn.fit(X_train, y_train).predict_proba(X_test)

    probas_list = [
        rf_probas,
        lr_probas,
        nb_probas,  # svm_scores,
        dt_scores,
        ab_scores,
        gb_scores,
        knn_scores
    ]

    clf_names = [
        'Random Forest',
        'Logistic Regression',
        'Gaussian NB',  # 'SVM',
        'Decision Tree',
        'Adaboost',
        'Gradient Boost',
        'KNN'
    ]

    skplt.metrics.plot_calibration_curve(y_test, probas_list, clf_names)
    plt.savefig('calibration.png')
    plt.tight_layout()
    plt.close()

    # pick classifier type by ROC (without optimization)
    probs = [
        rf_probas[:, 1],
        lr_probas[:, 1],
        nb_probas[:, 1],  # svm_scores[:, 1],
        dt_scores[:, 1],
        ab_scores[:, 1],
        gb_scores[:, 1],
        knn_scores[:, 1]
    ]

    plot_roc_curve(y_test, probs, clf_names)
    # more elaborate ROC example with CV = 5 fold
    # https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py

    os.chdir(curdir)

    return ''
예제 #5
0
파일: _umap.py 프로젝트: zwdiscover/scanpy
def umap(
    adata: AnnData,
    min_dist: float = 0.5,
    spread: float = 1.0,
    n_components: int = 2,
    maxiter: Optional[int] = None,
    alpha: float = 1.0,
    gamma: float = 1.0,
    negative_sample_rate: int = 5,
    init_pos: Union[_InitPos, np.ndarray, None] = 'spectral',
    random_state: AnyRandom = 0,
    a: Optional[float] = None,
    b: Optional[float] = None,
    copy: bool = False,
    method: Literal['umap', 'rapids'] = 'umap',
    neighbors_key: Optional[str] = None,
) -> Optional[AnnData]:
    """\
    Embed the neighborhood graph using UMAP [McInnes18]_.

    UMAP (Uniform Manifold Approximation and Projection) is a manifold learning
    technique suitable for visualizing high-dimensional data. Besides tending to
    be faster than tSNE, it optimizes the embedding such that it best reflects
    the topology of the data, which we represent throughout Scanpy using a
    neighborhood graph. tSNE, by contrast, optimizes the distribution of
    nearest-neighbor distances in the embedding such that these best match the
    distribution of distances in the high-dimensional space.  We use the
    implementation of `umap-learn <https://github.com/lmcinnes/umap>`__
    [McInnes18]_. For a few comparisons of UMAP with tSNE, see this `preprint
    <https://doi.org/10.1101/298430>`__.

    Parameters
    ----------
    adata
        Annotated data matrix.
    min_dist
        The effective minimum distance between embedded points. Smaller values
        will result in a more clustered/clumped embedding where nearby points on
        the manifold are drawn closer together, while larger values will result
        on a more even dispersal of points. The value should be set relative to
        the ``spread`` value, which determines the scale at which embedded
        points will be spread out. The default of in the `umap-learn` package is
        0.1.
    spread
        The effective scale of embedded points. In combination with `min_dist`
        this determines how clustered/clumped the embedded points are.
    n_components
        The number of dimensions of the embedding.
    maxiter
        The number of iterations (epochs) of the optimization. Called `n_epochs`
        in the original UMAP.
    alpha
        The initial learning rate for the embedding optimization.
    gamma
        Weighting applied to negative samples in low dimensional embedding
        optimization. Values higher than one will result in greater weight
        being given to negative samples.
    negative_sample_rate
        The number of negative edge/1-simplex samples to use per positive
        edge/1-simplex sample in optimizing the low dimensional embedding.
    init_pos
        How to initialize the low dimensional embedding. Called `init` in the
        original UMAP. Options are:

        * Any key for `adata.obsm`.
        * 'paga': positions from :func:`~scanpy.pl.paga`.
        * 'spectral': use a spectral embedding of the graph.
        * 'random': assign initial embedding positions at random.
        * A numpy array of initial embedding positions.
    random_state
        If `int`, `random_state` is the seed used by the random number generator;
        If `RandomState` or `Generator`, `random_state` is the random number generator;
        If `None`, the random number generator is the `RandomState` instance used
        by `np.random`.
    a
        More specific parameters controlling the embedding. If `None` these
        values are set automatically as determined by `min_dist` and
        `spread`.
    b
        More specific parameters controlling the embedding. If `None` these
        values are set automatically as determined by `min_dist` and
        `spread`.
    copy
        Return a copy instead of writing to adata.
    method
        Use the original 'umap' implementation, or 'rapids' (experimental, GPU only)
    neighbors_key
        If not specified, umap looks .uns['neighbors'] for neighbors settings
        and .obsp['connectivities'] for connectivities
        (default storage places for pp.neighbors).
        If specified, umap looks .uns[neighbors_key] for neighbors settings and
        .obsp[.uns[neighbors_key]['connectivities_key']] for connectivities.

    Returns
    -------
    Depending on `copy`, returns or updates `adata` with the following fields.

    **X_umap** : `adata.obsm` field
        UMAP coordinates of data.
    """
    adata = adata.copy() if copy else adata

    if neighbors_key is None:
        neighbors_key = 'neighbors'

    if neighbors_key not in adata.uns:
        raise ValueError(
            f'Did not find .uns["{neighbors_key}"]. Run `sc.pp.neighbors` first.'
        )
    start = logg.info('computing UMAP')

    neighbors = NeighborsView(adata, neighbors_key)

    if 'params' not in neighbors or neighbors['params']['method'] != 'umap':
        logg.warning(
            f'.obsp["{neighbors["connectivities_key"]}"] have not been computed using umap'
        )

    # Compat for umap 0.4 -> 0.5
    with warnings.catch_warnings():
        # umap 0.5.0
        warnings.filterwarnings("ignore", message=r"Tensorflow not installed")
        import umap

    if version.parse(umap.__version__) >= version.parse("0.5.0"):

        def simplicial_set_embedding(*args, **kwargs):
            from umap.umap_ import simplicial_set_embedding

            X_umap, _ = simplicial_set_embedding(
                *args,
                densmap=False,
                densmap_kwds={},
                output_dens=False,
                **kwargs,
            )
            return X_umap

    else:
        from umap.umap_ import simplicial_set_embedding
    from umap.umap_ import find_ab_params

    if a is None or b is None:
        a, b = find_ab_params(spread, min_dist)
    else:
        a = a
        b = b
    adata.uns['umap'] = {'params': {'a': a, 'b': b}}
    if isinstance(init_pos, str) and init_pos in adata.obsm.keys():
        init_coords = adata.obsm[init_pos]
    elif isinstance(init_pos, str) and init_pos == 'paga':
        init_coords = get_init_pos_from_paga(
            adata, random_state=random_state, neighbors_key=neighbors_key
        )
    else:
        init_coords = init_pos  # Let umap handle it
    if hasattr(init_coords, "dtype"):
        init_coords = check_array(init_coords, dtype=np.float32, accept_sparse=False)

    if random_state != 0:
        adata.uns['umap']['params']['random_state'] = random_state
    random_state = check_random_state(random_state)

    neigh_params = neighbors['params']
    X = _choose_representation(
        adata,
        neigh_params.get('use_rep', None),
        neigh_params.get('n_pcs', None),
        silent=True,
    )
    if method == 'umap':
        # the data matrix X is really only used for determining the number of connected components
        # for the init condition in the UMAP embedding
        n_epochs = 0 if maxiter is None else maxiter
        X_umap = simplicial_set_embedding(
            X,
            neighbors['connectivities'].tocoo(),
            n_components,
            alpha,
            a,
            b,
            gamma,
            negative_sample_rate,
            n_epochs,
            init_coords,
            random_state,
            neigh_params.get('metric', 'euclidean'),
            neigh_params.get('metric_kwds', {}),
            verbose=settings.verbosity > 3,
        )
    elif method == 'rapids':
        metric = neigh_params.get('metric', 'euclidean')
        if metric != 'euclidean':
            raise ValueError(
                f'`sc.pp.neighbors` was called with `metric` {metric!r}, '
                "but umap `method` 'rapids' only supports the 'euclidean' metric."
            )
        from cuml import UMAP

        n_neighbors = neighbors['params']['n_neighbors']
        n_epochs = (
            500 if maxiter is None else maxiter
        )  # 0 is not a valid value for rapids, unlike original umap
        X_contiguous = np.ascontiguousarray(X, dtype=np.float32)
        umap = UMAP(
            n_neighbors=n_neighbors,
            n_components=n_components,
            n_epochs=n_epochs,
            learning_rate=alpha,
            init=init_pos,
            min_dist=min_dist,
            spread=spread,
            negative_sample_rate=negative_sample_rate,
            a=a,
            b=b,
            verbose=settings.verbosity > 3,
            random_state=random_state,
        )
        X_umap = umap.fit_transform(X_contiguous)
    adata.obsm['X_umap'] = X_umap  # annotate samples with UMAP coordinates
    logg.info(
        '    finished',
        time=start,
        deep=('added\n' "    'X_umap', UMAP coordinates (adata.obsm)"),
    )
    return adata if copy else None
예제 #6
0
#esto ya no podr'a ser visualizado  en 2D porque tiene 3 atributos
#entonces vamos a generar una proyecci'on 2D de estos datos

X = dataset.iloc[:, [2, 3, 4]].values

X = StandardScaler().fit_transform(X)

#vamos a usar una proyeccion llamada UMAP es
#reciente y mostr'o resultados buen'isimos
umap = umap.UMAP(n_neighbors=3, min_dist=0.6, metric='cosine')

#esta proyeccion solo va a ser usada para visualizaciones
#nuestro clustering ser'a hecho en el espacio ndimensional
#que en este caso n=3
X_projected = umap.fit_transform(X)

plt.scatter(X_projected[:, 0], X_projected[:, 1], s=100, color="blue")
plt.grid()
plt.show()

kmeans = KMeans(n_clusters=7, init="random", max_iter=300)

# dentro de pred_y va a tener la lista de clusters resultantes
# NOO es variable dependiente, es un atributo nuevo
# son las etiquetas de cluster/grupo predichas
labels = kmeans.fit_predict(X)
plt.scatter(X_projected[:, 0], X_projected[:, 1], s=100, c=labels)
plt.grid()  # una opcion para mostrar nuestra malla grafica
#esta es la posicion de cada centroide en el grafico
# que no necesiramente esta asociado a un dato