예제 #1
0
def test_pseudo_inverse():
    "Tests of the pseudo-inverse"

    # Numerical version of the pseudo-inverse:
    pinv_num = core.wrap_array_func(numpy.linalg.pinv)

    ##########
    # Full rank rectangular matrix:
    m = unumpy.matrix([[ufloat((10, 1)), -3.1],
                       [0, ufloat((3, 0))],
                       [1, -3.1]])

    # Numerical and package (analytical) pseudo-inverses: they must be
    # the same:
    rcond = 1e-8  # Test of the second argument to pinv()
    m_pinv_num = pinv_num(m, rcond)
    m_pinv_package = core._pinv(m, rcond)
    assert matrices_close(m_pinv_num, m_pinv_package)

    ##########
    # Example with a non-full rank rectangular matrix:
    vector = [ufloat((10, 1)), -3.1, 11]
    m = unumpy.matrix([vector, vector])
    m_pinv_num = pinv_num(m, rcond)
    m_pinv_package = core._pinv(m, rcond)
    assert matrices_close(m_pinv_num, m_pinv_package)

    ##########
    # Example with a non-full-rank square matrix:
    m = unumpy.matrix([[ufloat((10, 1)), 0], [3, 0]])
    m_pinv_num = pinv_num(m, rcond)
    m_pinv_package = core._pinv(m, rcond)
    assert matrices_close(m_pinv_num, m_pinv_package)
예제 #2
0
def test_pseudo_inverse():
    "Tests of the pseudo-inverse"

    # Numerical version of the pseudo-inverse:
    pinv_num = core.wrap_array_func(numpy.linalg.pinv)

    ##########
    # Full rank rectangular matrix:
    m = unumpy.matrix([[ufloat((10, 1)), -3.1],
                       [0, ufloat((3, 0))],
                       [1, -3.1]])

    # Numerical and package (analytical) pseudo-inverses: they must be
    # the same:
    rcond = 1e-8  # Test of the second argument to pinv()
    m_pinv_num = pinv_num(m, rcond)
    m_pinv_package = core._pinv(m, rcond)
    assert matrices_close(m_pinv_num, m_pinv_package)

    ##########
    # Example with a non-full rank rectangular matrix:
    vector = [ufloat((10, 1)), -3.1, 11]
    m = unumpy.matrix([vector, vector])
    m_pinv_num = pinv_num(m, rcond)
    m_pinv_package = core._pinv(m, rcond)
    assert matrices_close(m_pinv_num, m_pinv_package)
    
    ##########
    # Example with a non-full-rank square matrix:
    m = unumpy.matrix([[ufloat((10, 1)), 0], [3, 0]])
    m_pinv_num = pinv_num(m, rcond)
    m_pinv_package = core._pinv(m, rcond)
    assert matrices_close(m_pinv_num, m_pinv_package)
예제 #3
0
def test_inverse():
    "Tests of the matrix inverse"

    m = unumpy.matrix([[ufloat((10, 1)), -3.1],
                       [0, ufloat((3, 0))]])
    m_nominal_values = unumpy.nominal_values(m)

    # "Regular" inverse matrix, when uncertainties are not taken
    # into account:
    m_no_uncert_inv = m_nominal_values.I

    # The matrix inversion should not yield numbers with uncertainties:
    assert m_no_uncert_inv.dtype == numpy.dtype(float)

    # Inverse with uncertainties:
    m_inv_uncert = m.I  # AffineScalarFunc elements
    # The inverse contains uncertainties: it must support custom
    # operations on matrices with uncertainties:
    assert isinstance(m_inv_uncert, unumpy.matrix)
    assert type(m_inv_uncert[0, 0]) == uncertainties.AffineScalarFunc

    # Checks of the numerical values: the diagonal elements of the
    # inverse should be the inverses of the diagonal elements of
    # m (because we started with a triangular matrix):
    assert _numbers_close(1/m_nominal_values[0, 0],
                          m_inv_uncert[0, 0].nominal_value), "Wrong value"

    assert _numbers_close(1/m_nominal_values[1, 1],
                          m_inv_uncert[1, 1].nominal_value), "Wrong value"


    ####################

    # Checks of the covariances between elements:
    x = ufloat((10, 1))
    m = unumpy.matrix([[x, x],
                       [0, 3+2*x]])

    m_inverse = m.I

    # Check of the properties of the inverse:
    m_double_inverse = m_inverse.I
    # The initial matrix should be recovered, including its
    # derivatives, which define covariances:
    assert _numbers_close(m_double_inverse[0, 0].nominal_value,
                          m[0, 0].nominal_value)
    assert _numbers_close(m_double_inverse[0, 0].std_dev(),
                          m[0, 0].std_dev())

    assert matrices_close(m_double_inverse, m)

    # Partial test:
    assert _derivatives_close(m_double_inverse[0, 0], m[0, 0])
    assert _derivatives_close(m_double_inverse[1, 1], m[1, 1])

    ####################

    # Tests of covariances during the inversion:

    # There are correlations if both the next two derivatives are
    # not zero:
    assert m_inverse[0, 0].derivatives[x]
    assert m_inverse[0, 1].derivatives[x]

    # Correlations between m and m_inverse should create a perfect
    # inversion:
    assert matrices_close(m * m_inverse,  numpy.eye(m.shape[0]))
예제 #4
0
def test_inverse():
    "Tests of the matrix inverse"

    m = unumpy.matrix([[ufloat((10, 1)), -3.1],
                       [0, ufloat((3, 0))]])
    m_nominal_values = unumpy.nominal_values(m)

    # "Regular" inverse matrix, when uncertainties are not taken
    # into account:
    m_no_uncert_inv = m_nominal_values.I

    # The matrix inversion should not yield numbers with uncertainties:
    assert m_no_uncert_inv.dtype == numpy.dtype(float)

    # Inverse with uncertainties:
    m_inv_uncert = m.I  # AffineScalarFunc elements
    # The inverse contains uncertainties: it must support custom
    # operations on matrices with uncertainties:
    assert isinstance(m_inv_uncert, unumpy.matrix)
    assert type(m_inv_uncert[0, 0]) == uncertainties.AffineScalarFunc

    # Checks of the numerical values: the diagonal elements of the
    # inverse should be the inverses of the diagonal elements of
    # m (because we started with a triangular matrix):
    assert _numbers_close(1/m_nominal_values[0, 0],
                          m_inv_uncert[0, 0].nominal_value), "Wrong value"
    
    assert _numbers_close(1/m_nominal_values[1, 1],
                          m_inv_uncert[1, 1].nominal_value), "Wrong value"


    ####################

    # Checks of the covariances between elements:
    x = ufloat((10, 1))
    m = unumpy.matrix([[x, x],
                       [0, 3+2*x]])

    m_inverse = m.I
    
    # Check of the properties of the inverse:
    m_double_inverse = m_inverse.I
    # The initial matrix should be recovered, including its
    # derivatives, which define covariances:
    assert _numbers_close(m_double_inverse[0, 0].nominal_value,
                          m[0, 0].nominal_value)
    assert _numbers_close(m_double_inverse[0, 0].std_dev(),
                          m[0, 0].std_dev())

    assert matrices_close(m_double_inverse, m)

    # Partial test:
    assert _derivatives_close(m_double_inverse[0, 0], m[0, 0])
    assert _derivatives_close(m_double_inverse[1, 1], m[1, 1])

    ####################

    # Tests of covariances during the inversion:

    # There are correlations if both the next two derivatives are
    # not zero:
    assert m_inverse[0, 0].derivatives[x]
    assert m_inverse[0, 1].derivatives[x]

    # Correlations between m and m_inverse should create a perfect
    # inversion:
    assert matrices_close(m * m_inverse,  numpy.eye(m.shape[0]))