예제 #1
0
def test_x2_in_x1_2():
    """
    x2 has a couple of bins, each of which span more than one original bin
    """
    # old size
    m = 10

    # bin edges
    x_old = np.linspace(0., 1., m+1)
    x_new = np.array([0.25, 0.55, 0.75])

    # some arbitrary distribution
    y_old = 1. + np.sin(x_old[:-1]*np.pi) / np.ediff1d(x_old)

    y_old = unp.uarray(y_old, 0.1*y_old*uniform((m,)))

    # rebin
    y_new = rebin.rebin(x_old, y_old, x_new, interp_kind='piecewise_constant')

    # compute answer here to check rebin
    y_new_here = unp.uarray(np.zeros(2), np.zeros(2))
    y_new_here[0] = 0.5 * y_old[2] + y_old[3] + y_old[4] + 0.5 * y_old[5]
    y_new_here[1] = 0.5 * y_old[5] + y_old[6] + 0.5 * y_old[7]

    assert_allclose(unp.nominal_values(y_new),
                   unp.nominal_values(y_new_here))

    # mean or nominal value comparison
    assert_allclose(unp.std_devs(y_new),
                       unp.std_devs(y_new_here))
예제 #2
0
def day3_vacuum():
    plt.clf()
    ux = unp.uarray([800, 1000, 500], ux_error)  # V
    ug_crit = unp.uarray([110, 140, 30], ug_error)  # V
    omega = 2 * math.pi * ufloat(48, 1)  # Hz

    ug_crit = _apply_additional_proportional_error(ug_crit, stability_uncertainty_vacuum)
    ux *= ux_correction
    ug_crit *= ug_correction

    stability(ux, ug_crit, omega, label="Particle V1")

    plt.title("p = 300 mbar")
    plt.legend(loc=2)
    plt.savefig("images/stability_vacuum_1.pdf")

    plt.clf()
    ux = unp.uarray([700, 800], ux_error)  # V
    ug_crit = unp.uarray([100, 140], ug_error)  # V
    omega = 2 * math.pi * ufloat(45, 1)  # Hz

    ug_crit = _apply_additional_proportional_error(ug_crit, stability_uncertainty_vacuum)
    ux *= ux_correction
    ug_crit *= ug_correction

    stability(ux, ug_crit, omega, label="Particle V2")

    plt.title("p = 180 mbar")
    plt.legend(loc=2)
    plt.savefig("images/stability_vacuum_2.pdf")
예제 #3
0
def other(g=True):
    freq = unumpy.uarray([100, 500, 1000, 5000, 10000, 50000], np.array([100, 500, 1000, 5000, 10000, 50000]) * 0.01)
    vin = ufloat(1.01, 0.01)
    vout = unumpy.uarray([0.640, 3.02, 5.27, 9.2, 9.6, 6.4], [0.01, 0.01, 0.01, 0.1, 0.1, 0.1])
    fase = unumpy.uarray([92, 108, 123, 166, 178, -125], [1, 2, 1, 1, 1, 1])

    Gs = vout / vin
    dB = 10 * unumpy.log10(Gs)

    if not g:
        return None

    f = plt.figure(figsize=(8, 8))
    f.suptitle("Differenziatore", fontsize=15, y=0.98)
    
    ax = f.add_subplot(211)

    ax.errorbar(x=unumpy.nominal_values(freq),
        y=unumpy.nominal_values(Gs),
        c='black', fmt='o-')

    ax.set_xlabel('Frequenza', fontsize=14)
    ax.set_ylabel('Guadagno G', fontsize=14)

    ax.set_xscale('log')
    #ax.set_ylim((-13, 1))
    #ax.set_yticklabels(('', 2, 4, 6, 8, 10, 12))
    ax.set_xticklabels(('', '100 Hz', u"1 kHz", u"10 kHz", u"100 kHz", u"1 MHz"))
    
    ax.minorticks_on()
    ax.grid(b=True, which='major', color='0.7', linestyle='-', zorder=-5)
    ax.grid(b=True, which='minor', color='0.9', linestyle='-', zorder=-9)
    ax.set_axisbelow(True)
    
    ax2 = f.add_subplot(212)

    ax2.errorbar(x=unumpy.nominal_values(freq),
        y=unumpy.nominal_values(fase),
        c='black', fmt='o-')

    ax2.set_ylabel('Sfasamento [Gradi]', fontsize=14)

    ax2.set_xscale('log')
    #ax2.set_yticklabels(('', 25, 50, 75, 100))
    ax2.set_xticklabels(('', '100 Hz', u"1 kHz", u"10 kHz", u"100 kHz"))
    
    ax2.minorticks_on()
    ax2.grid(b=True, which='major', color='0.7', linestyle='-', zorder=-5)
    ax2.grid(b=True, which='minor', color='0.9', linestyle='-', zorder=-9)
    ax2.set_axisbelow(True)

    ax3 = ax2.twiny()
    ax3.set_xticks((0, 0.333, 0.666, 1))
    ax3.set_xticklabels(('', "1 kHz", u"10 kHz", u"100 kHz"))

    f.subplots_adjust(top=0.93, hspace=0.25, bottom=0.07, right=0.95)

    plt.savefig("../latex/diff.pdf")

    plt.show()
예제 #4
0
def g_1000hz():
    g_1000hz = np.genfromtxt("../dati/g_1000hz.csv", skip_header=1, delimiter=",")
    vin = unumpy.uarray(g_1000hz[:,0] * 0.001, g_1000hz[:,1] * 0.001)
    vout = unumpy.uarray(g_1000hz[:,2], g_1000hz[:,3])

    Gs = vout / vin
    G = sum(Gs) / float(len(Gs))

    print Gs, "\n", G
예제 #5
0
    def usum(self, width=False):
        """
        Return the sum of the bin contents and uncertainty.

        See sum().
        """
        if width:
            return np.dot(np.diff(self.bins), uarray((self.hist, self.errs)))
        else:
            return np.sum(uarray((self.hist, self.errs)))
예제 #6
0
def I_with_err(f_val=1, f_err=0, g_val=g_DEFAULT, g_err=0,
               e=1, e1=1, e2=E_INF):
    """Wrapper for f so the user doesn't have to know about
    the uncertainties module"""
    from uncertainties import unumpy
    f = unumpy.uarray(f_val, f_err)
    g = unumpy.uarray(g_val, g_err)
    _I = power_law_integral_flux(f, g, e, e1, e2)
    I_val = unumpy.nominal_values(_I)
    I_err = unumpy.std_devs(_I)
    return I_val, I_err
예제 #7
0
def plot_u(cal_file, fm_file, offset_file, description, accidental_offset,
        results_file):
    M = np.genfromtxt(cal_file)
    N = np.genfromtxt(fm_file)
    O = np.genfromtxt(offset_file)

    i_helm = M[:,1] #current applied to helmholtz for calibration measurement
    b_helm = M[:,2] #field applied to helmholtz coil for calibration measurement
    p, cov = np.polyfit(i_helm, b_helm, 1,  cov=True) #fit a line to calibration measurement so that we get a calibration

    i_fm = N[:,1] #current applied to helmmholtz for shielding measurement
    b_fm = unumpy.uarray(N[:,2],0.0005) - accidental_offset #field measured inside of ferromagnet shield


    B_earth = np.polyval(p,0) #We get the Earths magnetic field from i=0 of the Helmholtz calibration
    B_fm_no_i = unumpy.uarray(np.mean(O[:,2]), np.std(O[:,2])) #Get average and error for initial magnetization

    mag = B_fm_no_i - B_earth #initial magnetization is the field inside of the ferromagnet before any field is applied minus the earths magnetic field 

    Bin = b_fm - mag #internal magnetization is the measured internal field minus the initial magnetization. This correction might not be necessary for a soft ferromagnet
    
    Bext = unumpy.uarray(np.polyval(p,i_fm), 0.0005) #external field
    Bext_nom = unumpy.nominal_values(Bext)
    Bext_err = unumpy.std_devs(Bext)

    B = Bext/Bin
    c = a/b
    u=(-2*B + c**2 - 2*unumpy.sqrt(B**2 - B*c**2 - B + c**2) + 1)/(c**2 - 1)

    u_nom = unumpy.nominal_values(u)
    u_err = unumpy.std_devs(u)

    #cakculate uerr with just point to point uncertainties. I define this as just
    #uncertainty from the field measurements
    u_pp=(-2*B + c.nominal_value**2 - 2*unumpy.sqrt(B**2 - B*c.nominal_value**2 - B + c.nominal_value**2) + 1)/(c.nominal_value**2 - 1)
    
    #calculate uerr from just geometry uncertainties
    u_geom=(-2*unumpy.nominal_values(B) + c**2 - 2*unumpy.sqrt(unumpy.nominal_values(B)**2 - unumpy.nominal_values(B)*c**2 - unumpy.nominal_values(B) + c**2) + 1)/(c**2 - 1)

    ##obtain uncertainties from field
    u_err_pp = unumpy.std_devs(u_pp)

    ##obtain uncertainties from geometry
    u_err_geom = unumpy.std_devs(u_geom)

    with open(results_file, "w") as myfile:
        myfile.write('#Bext, sig_Bext, ur, sig_ur, sig_ur_pp, sig_ur_corr\n')
        for j in range(0, len(u_nom)):
            myfile.write('%s\t%s\t%s\t%s\t%s\t%s\n' %(
                Bext_nom[j], Bext_err[j],
                u_nom[j], u_err[j], u_err_pp[j], u_err_geom[j]))
    

    plt.errorbar(Bext_nom, u_nom, u_err, marker = '.', label = description)
예제 #8
0
def f_with_err(I_val=1, I_err=0, g_val=g_DEFAULT, g_err=0,
               e=1, e1=1, e2=E_INF):
    """Wrapper for f so the user doesn't have to know about
    the uncertainties module"""
    from uncertainties import unumpy
    I = unumpy.uarray(I_val, I_err)
    g = unumpy.uarray(g_val, g_err)
    _f = power_law_flux(I, g, e, e1, e2)
    f_val = unumpy.nominal_values(_f)
    f_err = unumpy.std_devs(_f)
    return f_val, f_err
예제 #9
0
파일: n.py 프로젝트: knly/PAP2
def compute_hwz(N_list, ttor, fit, plotname, title, sl=slice(None,None), Uscale=1, p0=None, eq=None, plabels=None, punits=None, Th_erw=None):
    
    N = np.sum(unp.uarray(N_list,np.sqrt(N_list)), axis=0)
    t = np.arange(len(N))*ttor+ttor/2.

    table = pt.PrettyTable()
    table.add_column('t [s]', t.astype(int), align='r')
    if len(N_list) > 1:
        for i in range(len(N_list)):
            table.add_column('N'+str(i+1), N_list[i].astype(int), align='r')
        table.add_column('Summe', N, align='r')
    else:
        table.add_column('N', N, align='r')
    with open("Resources/table_"+plotname+".txt", "w") as text_file:
        text_file.write(table.get_string())


    global N_U
    N_U = N_U0*Uscale*ttor
    popt, pstats = papstats.curve_fit(fit, t[sl], N[sl], p0=p0)

    # Untergrundfehler
    N_U = (N_U0-N_U0.s)*Uscale*ttor
    popt_min, pstats_min = papstats.curve_fit(fit, t[sl], N[sl], p0=p0)
    N_U = (N_U0+N_U0.s)*Uscale*ttor
    popt_max, pstats_max = papstats.curve_fit(fit, t[sl], N[sl], p0=p0)
    N_U = N_U0*Uscale*ttor
    s_U = unp.nominal_values(((np.abs(popt-popt_min)+np.abs(popt-popt_max))/2.))
    s_corrected = np.sqrt(unp.std_devs(popt)**2 + s_U**2)
    popt_corrected = unp.uarray(unp.nominal_values(popt),s_corrected)
    
    # Halbwertszeit
    Th = popt_corrected[::2]*unc.umath.log(2)
    for i in range(len(Th)):
        papstats.print_rdiff(Th[i]/60, Th_erw[i]/60)

    # Plot
    plt.clf()
    plt.title('Diagramm '+plotname+': '+title)
    plt.xlabel('Messzeit $t \, [s]$')
    plt.ylabel('Ereigniszahl $N$')
    xspace = np.linspace(0, t[-1])
    papstats.plot_data(t, N, label='Messpunkte')
    papstats.plot_fit(fit, popt, pstats, xspace, eq=eq, plabels=plabels, punits=punits)
    plt.fill_between(xspace, fit(xspace, *unp.nominal_values(popt_min)), fit(xspace, *unp.nominal_values(popt_max)), color='g', alpha=0.2)
    Nmin = np.amin(unp.nominal_values(N))
    for i in range(len(Th)):
        plt.hlines(popt[1::2][i].n/2.+N_U.n, 0, Th[i].n, lw=2, label='Halbwertszeit $'+papstats.pformat(Th[i], label=r'T_{\frac{1}{2}}'+('^'+str(i+1) if len(Th)>1 else ''), unit='s')+'$')
    handles, labels = plt.gca().get_legend_handles_labels()
    p = plt.Rectangle((0, 0), 1, 1, color='g', alpha=0.2)
    handles.append(p)
    labels.append('Fit im '+r'$1 \sigma$'+'-Bereich von $N_U$:'+''.join(['\n$'+papstats.pformat(s_U[i], label='\Delta '+plabels[i]+'^{U}', unit=punits[i])+'$' for i in range(len(plabels))]))
    plt.legend(handles, labels)
    papstats.savefig_a4(plotname+'.png')
def evaluate_permeability( fname_data="samplemeasurement.csv", Bin="B1", Bout="B2", fname_do="fm618_do_cryo.txt", fname_th="fm618_th_cryo.txt" ):

    print ("Evaluating permeability for: ", fname_data, Bin, Bout, fname_do, fname_th )

    # prepare result dataframe
    result = pd.DataFrame(columns = ["Bout","Bout_sdev","mu","mu_err_pp","mu_err_geom"])
    
    # get data
    data = pd.read_csv(fname_data)

    print(data.head(10))

    # set uncertainty for field reading manually to 0 if it does not exist
    if Bin + '_sdev' not in data:
        print ("Use uncertainty of 0.005 for " , Bin+'_sdev')
        data[Bin + '_sdev'] = 0.005 #Gaussmeter precision 0.01 mT above 30 mT)

    # set uncertainty for field reading manually to 0 if it does not exist
    if Bout + '_sdev' not in data:
        print ("Use uncertainty of 0.005 for " , Bout+'_sdev')
        data[Bout + '_sdev'] = 0.005

    # copy Bin and Bout to results
    result['Bout_c'] = unumpy.uarray( abs( data[Bout].values ), data[Bout + '_sdev'].values)
    result['Bin_c'] = unumpy.uarray( abs( data[Bin].values ), data[Bin + '_sdev'].values)
    
    # get inner and outer diameter
    diam_out = mean_from_file('diameter_files/'+fname_do)
    thickness = mean_from_file('diameter_files/'+fname_th)
    diam_in = diam_out - 2*thickness

    # check ideal permeability
    calc_mu_cloak(diam_in, diam_out)

    # calculate permeability and store values and uncertainties in arrays
    (mu_c, mu_err, mu_err_pp, mu_err_geom) = calc_mu(Bin=result['Bin_c'], Bout=result['Bout_c'], radius_inner=diam_in, radius_outer=diam_out)

    result["mu"] = mu_c
    result["mu_err"] = mu_err
    result["mu_err_pp"] = mu_err_pp
    result["mu_err_geom"] = mu_err_geom

    # same for Bout
    result["Bout"] = unumpy.nominal_values(result["Bout_c"])
    result["Bout_sdev"] = unumpy.std_devs(result["Bout_c"])

    #print(result.head(10))

    # drop 'mu_c' and 'Bout_c'
    result.drop('Bin_c', axis=1, inplace=True)
    result.drop('Bout_c', axis=1, inplace=True)

    return (result)
def plot_u(cal_file, fm_file,  description, accidental_offset,
        results_file):
    M = np.genfromtxt(cal_file) #turn calibration file into a matrix
    N = np.genfromtxt(fm_file) #turn fm_scan file into a matrix


    i_helm = M[:,1] #current applied to helmholtz for calibration measurement
    b_helm = M[:,2] #field applied to helmholtz coil for calibration measurement
    p, cov = np.polyfit(i_helm, b_helm, 1,  cov=True) #fit a line to calibration measurement so that we get a calibration

    
    i_fm = N[:,1] #current applied to helmmholtz for shielding measurement
    Bin = unumpy.uarray(N[:,2],0.0005) - accidental_offset #field measured inside of ferromagnet shield


    Bin_nom = unumpy.nominal_values(Bin) 
    Bin_err = unumpy.std_devs(Bin)

    Bext = unumpy.uarray(np.polyval(p,i_fm), 0.0005) #external field
    Bext_nom = unumpy.nominal_values(Bext)
    Bext_err = unumpy.std_devs(Bext)

    B = Bin/Bext #ratio of internal to external field

    #calculate permeability
    u = (B*c**2 + B -2 -2*unumpy.sqrt(B**2*c**2 - B*c**2 - B + 1))/(B*c**2-B) 
    print(u)
    u_nom = unumpy.nominal_values(u)
    u_err = unumpy.std_devs(u)

    #cakculate uerr with just point to point uncertainties. I define this as just
    #uncertainty from the field measurements
    u_pp = (B*c.n**2 + B -2 -2*unumpy.sqrt(B**2*c.n**2 - B*c.n**2 - B +
        1))/(B*c.n**2-B)

    u_err_pp = unumpy.std_devs(u_pp)

    #calculate uerr from just geometry uncertainties
    u_geom = (unumpy.nominal_values(B)*c**2 + unumpy.nominal_values(B) -2 -2*unumpy.sqrt(unumpy.nominal_values(B)**2*c**2 - unumpy.nominal_values(B)*c**2 - unumpy.nominal_values(B) +
        1))/(unumpy.nominal_values(B)*c**2-unumpy.nominal_values(B))

    u_err_geom = unumpy.std_devs(u_geom)


    #write results onto a text file
    with open(results_file, "w") as myfile:
        myfile.write('#Bext, sig_Bext, Bi, sig_Bi, ur, sig_ur, sig_ur_pp, sig_ur_corr\n')
        for j in range(0, len(u_nom)):
            myfile.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' %(
                Bext_nom[j], Bext_err[j], Bin_nom[j], Bin_err[j],
                u_nom[j], u_err[j], u_err_pp[j], u_err_geom[j]))
    
    plt.errorbar(Bext_nom, u_nom, u_err, marker = '.', label = description)
예제 #12
0
파일: powerlaw.py 프로젝트: gammapy/gammapy
def power_law_I_with_err(
    f_val=1, f_err=0, g_val=g_DEFAULT, g_err=0, e=1, e1=1, e2=E_INF
):
    """Evaluate power-law flux and propagate errors."""
    from uncertainties import unumpy

    f = unumpy.uarray(f_val, f_err)
    g = unumpy.uarray(g_val, g_err)
    _I = power_law_integral_flux(f, g, e, e1, e2)
    I_val = unumpy.nominal_values(_I)
    I_err = unumpy.std_devs(_I)
    return I_val, I_err
예제 #13
0
파일: powerlaw.py 프로젝트: gammapy/gammapy
def power_law_f_with_err(
    I_val=1, I_err=0, g_val=g_DEFAULT, g_err=0, e=1, e1=1, e2=E_INF
):
    """Evaluate power-law ``dnde`` and propagate errors."""
    from uncertainties import unumpy

    I = unumpy.uarray(I_val, I_err)
    g = unumpy.uarray(g_val, g_err)
    _f = power_law_flux(I, g, e, e1, e2)
    f_val = unumpy.nominal_values(_f)
    f_err = unumpy.std_devs(_f)
    return f_val, f_err
def calcGasMass(DMpc, FHI, FCO, FCOerr):
	# Calculate HI gas mass
	FHI = unumpy.uarray(FHI,(FHI*0.2))
	MHI = (2.356E5)*((DMpc)**2.)*(FHI)
	# Calculate H2 gas mass
	FCO = unumpy.uarray(FCO,FCOerr)
	MH2 = 7845*FCO*((DMpc)**2.)
	where_are_nans = unumpy.isnan(MH2)
	MH2[where_are_nans] = 0
	# Total gas mass
	Mgas = MHI + MH2
	return MHI, MH2, Mgas
	def __init__( self, x, y, text, saveAffix, execludeLast = False):
		from ROOT import TPaveText
		self.x = x
		self.y = y
		self.text = text
		self.saveAffix = saveAffix
		error_ug = 15
		error_ux = 10 * sqrt(2)
		x = uarray(( array( x ), [ error_ug ]*len( x )))
		y = uarray(( array( y ), [ error_ux]*len( y )))
		x = x**2

		self.reg = linearRegression(x, y, execludeLast )
		self.reg.func.SetParNames('a','b')
		self.reg.draw(";U^{2}_{i} [V^{2}];U_{g} [V]" )
		self.reg.canvas.cd()
		label = TPaveText(0.1, 0.95, .86, 1, "NDC")
		label.AddText( text )
		label.SetFillStyle(0)
		label.SetBorderSize(0)
		label.Draw()
		ROOT.kPrint = 0
		'''
		ROOT.kInfo = 1000
		ROOT.kWarning = 2000;
		ROOT.kError = 3000;
		ROOT.Break = 4000;
		ROOT.kSysError = 5000;
		ROOT.kFatal = 6000;
		'''
		self.reg.canvas.SaveAs('linReg%s.pdf'%saveAffix)

		# calculate q_m
		# variable definitions:
		from math import pi
		K = 8
		w =  2. * pi * 30
		e_w = 2. * pi
		r =   0.0305 / 2
		e_r = 0.0002 / 2
		#print( '"{}  +/- {}",'.format(self.reg.func.GetParameter(0), self.reg.func.GetParError(0) ) )
		b = self.reg.func.GetParameter(1)
		if b == 0:
			return
		e_b = self.reg.func.GetParError(1)
		q_m = -2. * w**2 * r**2 * b / ( 3 * K ) * 1e6
		stat = abs( 1.* q_m * e_b / b )
		sys = abs (2. * q_m * sqrt( (e_w/w)**2 + (e_r/r)**2 ) )
		#print('{}: q/m = {:.4e} ± {:.2e} (stat) ± {:.2e} (sys) ± {:.2e} (gesamt) μC/kg\n'.format(saveAffix, q_m, stat, sys, sqrt(stat**2 + sys**2)))
		druck = { 'Luft1': 1000, 'Luft2': 1000, '375bar': 375, '400bar': 400, '425bar': 425, '425bar2': 425 }
		print('{} & {:.3g} ± {:.2g} (stat) ± {:.2g} (sys) {:2g}\\\\'.format(druck[saveAffix], -q_m, stat, sys, sqrt( stat**2 + sys**2) ))
예제 #16
0
    def uintegrate(self, x1, x2, width=False):
        """
        Return the integral of the bin contents from `x1` to `x2` and
        uncertainty.

        See integrate().
        """
        i1, i2 = self.findbin([x1,x2])

        if width:
            return np.dot(np.diff(self.bins[i1:i2+2]),
                          uarray((self.hist[i1:i2+1], self.errs[i1:i2+1])))
        else:
            return np.sum(uarray((self.hist[i1:i2+1], self.errs[i1:i2+1])))
예제 #17
0
def efficiencies(input, ht_val, alphat_binning, mhtmet_binning):
    vals = np.zeros((len(mhtmet_binning), len(alphat_binning)))
    errs = np.zeros_like(vals)
    diff = unumpy.uarray(vals, errs)
    cumu = unumpy.uarray(vals, errs)
    for imht in range(len(mhtmet_binning)):
        mhtmet_val = mhtmet_binning[imht]
        for ialphat in range(len(alphat_binning)):
            alphat_val = alphat_binning[ialphat]
            diff[imht][ialphat] = efficiency(input, ht_val, alphat_val, mhtmet_val, True)
            cumu[imht][ialphat] = efficiency(input, ht_val, alphat_val, mhtmet_val, False)
    #            if ialphat == len(alphat_binning)-1 :
    #                diff[imht][ialphat] = cumu[imht][ialphat]
    return diff, cumu
예제 #18
0
파일: plot.py 프로젝트: Fujnky/ap
def auswerten(name, d, n, t, z, V_mol, eps, raw):
    d *= 1e-3
    N = unp.uarray(n/t, np.sqrt(n)/t) - N_u

    if name=="Cu":
        tools.table((raw[0], raw[1], N), ("D/mm", "n", "(N-N_U)/\per\second"), "build/{}.tex".format(name), "Messdaten von {}.".format(name), "tab:daten{}".format(name), split=2, footer=r"$\Delta t = \SI{60}{s}$")#"(N-N_U)/\per\second"
    else:
        tools.table((raw[0], raw[1], raw[2], N), ("D/mm", "n", "\Delta t/s", "(N-N_U)/\per\second"), "build/{}.tex".format(name), "Messdaten von {}.".format(name), "tab:daten{}".format(name), split=2)
    mu = z * const.N_A / V_mol * 2 * np.pi * (const.e**2 / (4 * np.pi * const.epsilon_0 * const.m_e * const.c**2))**2 * ((1+eps)/eps**2 * ((2 * (1+eps))/(1+2*eps) - 1/eps * np.log(1+2*eps)) + 1/(2*eps) * np.log(1+ 2*eps) - (1+ 3*eps)/(1+2*eps)**2)

    params, pcov = curve_fit(fit, d, unp.nominal_values(N), sigma=unp.std_devs(N))
    params_ = unc.correlated_values(params, pcov)
    print("{}: N(0) = {}, µ = {}, µ_com = {}".format(name, params_[0], -params_[1], mu))

    sd = np.linspace(0, .07, 1000)

    valuesp = (fit(sd, *(unp.nominal_values(params_) + 10*unp.std_devs(params_)))).astype(float)
    valuesm = (fit(sd, *(unp.nominal_values(params_) - 10*unp.std_devs(params_)))).astype(float)

    #plt.xlim(0,7)
    plt.xlabel(r"$D/\si{mm}$")
    plt.ylabel(r"$(N-N_U)/\si{\per\second}$")
    plt.plot(1e3*sd, fit(sd, *params), 'b-', label="Fit")
    plt.fill_between(1e3*sd, valuesm, valuesp, facecolor='blue', alpha=0.125, edgecolor='none', label=r'$1\sigma$-Umgebung ($\times 10$)')
    plt.errorbar(1e3*d, unp.nominal_values(N), yerr=unp.std_devs(N), fmt='rx', label="Messdaten")
    plt.legend(loc='best')
    plt.yscale('linear')
    plt.tight_layout(pad=0)
    plt.savefig("build/{}.pdf".format(name))
    plt.yscale('log')
    plt.savefig("build/{}_log.pdf".format(name))
    plt.clf()
예제 #19
0
 def test_Estrainfit(self):
     #create some fake strains
     d0=2.34
     E0 = 6.19920965/(d0*np.sin(np.radians(4.5/2)))  
     e1=0.002
     e2=-0.0012
     e12=0.0008
     #the azimuthal angle
     phi = np.linspace(-np.pi/2,np.pi/2,23)
     #distort the lattice as function of phi
     edata = E0 + E0*(e1*np.cos(phi)**2 + e2*np.sin(phi)**2 + e12*np.sin(2*phi))
     edata += np.random.uniform(-0.00002,0.00002,edata.size)
     edata = unumpy.uarray((edata,np.sqrt(edata)))
     #fit
     result = strain.strain_from_E(edata,phi,E0)
     #check the results
     self.assertAlmostEqual(e1,result['strain_x'].nominal_value,4)
     self.assertAlmostEqual(e2,result['strain_y'].nominal_value,4)
     self.assertAlmostEqual(e12,result['strain_xy'].nominal_value,4)
     
     #fit with d0
     result = strain.strain_from_E(edata,phi,d0=d0,tth=4.5)
     #check the results
     self.assertAlmostEqual(e1,result['strain_x'].nominal_value,4)
     self.assertAlmostEqual(e2,result['strain_y'].nominal_value,4)
     self.assertAlmostEqual(e12,result['strain_xy'].nominal_value,4) 
def fit_stretched_exp(x, y, yerr, xlong):
    start = time.time()
    p0 = (-1.5, 100, 0.15, 2)
    p, cov = curve_fit(func_stretched_exp, x, y, p0=p0, sigma = yerr, maxfev = 100000)
    print(p)
    perr = np.sqrt(np.diag(cov))    

    yfit = func_stretched_exp(x, p[0], p[1], p[2], p[3])
    resid = y-yfit
    dof = y.size - len(p)
    chi2 = np.sum((resid/yerr)**2)
    chi2red = chi2/dof
    p_val = 1 - stats.chi2.cdf(chi2,dof)
    yfit = func_stretched_exp(xlong, p[0], p[1], p[2], p[3])
    p = unumpy.uarray(p,perr)
    extrapolate_val = p[0]*unumpy.exp(-(extrapolate_times/p[1])**p[2])+p[3] 

    if p[2]>0:
        extrap_inf = p[3]
    elif p[2]<0:
        extrap_inf = p[0]+p[3]

    end = time.time()
    elapsed = end-start
    return (chi2red, resid, extrapolate_val, extrap_inf, 1, unumpy.nominal_values(p),
            unumpy.std_devs(p), yfit, elapsed, p_val)
예제 #21
0
def mean(values, axis=0):
    """Returns mean values and their mean errors of a given array. Return value will be a unp.uarray
    Args:
            values:     (list)  Array containing numbers whose mean is desired.
            axis:       (int)   Axis along which the means are computed. The default is to compute the mean of the flattened array.
    """
    return unp.uarray((np.mean(noms(values), axis=axis), scipy.stats.sem(noms(values), axis=axis)))
def fit_func(func, x, y, yerr, xlong,ylong):
    start = time.time()
    p, cov = curve_fit(func, x, y, p0 = initial_guess(func,x,y), sigma = yerr,
            maxfev = 1000000)
#    print(p)
    if func == func_power:
        pi = p
        p, cov = curve_fit(func, x, y, p0 = initial_guess(func, x+p[2], y),
                sigma = yerr, maxfev = 1000000)
        while (np.any((pi/p-1)>0.001)):
            pi=p
            p, cov = curve_fit(func, x, y, p0 = initial_guess(func, x+p[2], y),
                    sigma = yerr, maxfev = 1000000)
    perr = np.sqrt(np.diag(cov))

    chi2red, pval = calculate_stats(x, y, yerr, p, perr, func)

    yfit = func(xlong,*p)
    resid = ylong-yfit
    p = unumpy.uarray(p,perr)
    extrapolate_val = func_err_prop(func,extrapolate_times,p)
    print(extrapolate_val)

    end = time.time()
    elapsed = end-start

    return (p, yfit, resid, extrapolate_val, chi2red, pval, elapsed) 
예제 #23
0
def test_integrate_spectrum_ecpl():
    """
    Test ecpl integration. Regression test for
    https://github.com/gammapy/gammapy/issues/687
    """
    from uncertainties import unumpy
    amplitude = unumpy.uarray(1E-12, 1E-13)
    index = unumpy.uarray(2.3, 0.2)
    reference = 1
    lambda_ = 0.1
    ecpl = ExponentialCutoffPowerLaw(index, amplitude, reference, lambda_)
    emin, emax = 1, 1E10
    val = ecpl.integral(emin, emax)

    assert_allclose(unumpy.nominal_values(val), 5.956578235358054e-13)
    assert_allclose(unumpy.std_devs(val), 9.278302514378108e-14)
def estimate_sigmas(values, ableseunsicherheit):
    """Generates std deviations for analoge instruments. Returns a ufloatarray."""
    nominal = values
    magnitude = np.floor(np.log10(nominal))
    error = [ableseunsicherheit * 10**mag for mag in magnitude]

    return uarray(nominal, error)
예제 #25
0
파일: lsd.py 프로젝트: rsnemmen/nemmen
def uarray(x,errx):
	"""
With the new releases of the uncertainties and astropy.io.ascii (0.2.3, the
replacement of asciitable), if I try to create an uncertainties array with
the column of a table imported with ascii I run into trouble. For instance, 
if I use the sequence of commands below:

>>> import astropy.io.ascii as asciitable
>>> raff= asciitable.read('data/rafferty06.dat')
>>> m,errm=raff['mass'],raff['errm']
>>> mass=unumpy.uarray(m,errm)
>>> x=0.2*mass

I get the error message: 

>>> TypeError: unsupported operand type(s) for *: 'float' and 'Column'

which I can only assume is due to the new way ascii handles tables.

I created this method to use as a replacement for unumpy.uarray that handles
the tables created with astropy.io.ascii.

Usage is the same as uncertainties.unumpy.uarray.

:type x,errx: arrays created with astropy.io.ascii.
:returns: uncertainties array.
	"""
	import uncertainties.unumpy as unumpy

	x=numpy.array(x)
	errx=numpy.array(errx)

	return unumpy.uarray(x,errx)
예제 #26
0
파일: linReg.py 프로젝트: miallo/PP15
def propReg2(xdata,ydata):
    m = np.sum(xdata*ydata)/np.sum(xdata*xdata)
    stddev = np.sqrt( np.sum((ydata - m*xdata)**2)/(len(xdata)-1) )
    uydata = unumpy.uarray(ydata,stddev)
    #uxdata = unumpy.uarray(xdata,stddev)
    um = np.sum(xdata*uydata)/np.sum(xdata*xdata)
    return np.array([uc.nominal_value(um), 0]), np.array([uc.std_dev(um), 0])    
예제 #27
0
def regression(f, x_u, y_u, beta0 ):
    for i, y in enumerate(y_u):
        if ustd(y) == 0:
            y_u[i] = ufloat(y_u[i].nominal_value, y_u[i].nominal_value/1e15)
    if len(x_u.shape) == 2:
        x_nom = range(len(x_u))
        x_error = range(len(x_u))
        for i, col in enumerate(x_u):
            for j, elem in enumerate(col):
                if ustd(elem) == 0:
                    x_u[i,j] = ufloat(elem.nominal_value, elem.nominal_value/1e15)
            x_nom[i] = unom(x_u[i])
            x_error[i] = ustd(x_u[i])
        x_nom = np.array(x_nom)
        x_error = np.array(x_error)
    elif np.sum(ustd(x_u)) == 0:
        x_error = None
    else:
        x_error = ustd(x_u)
        x_nom = unom(x_u)
    linear = odrpack.Model(f)
    mydata = odrpack.RealData(x_nom, unom(y_u),sy=ustd(y_u), sx=x_error)
    myodr = odrpack.ODR(mydata, linear, beta0=beta0)
    myoutput = myodr.run()
    #myoutput.pprint()
    #print "Chi-squared =", np.sum((myoutput.delta**2 + myoutput.eps**2)/(ustd(x_u)**2+ ustd(y_u)**2))
    print "Chi-squared =", myoutput.sum_square
    beta_u = unumpy.uarray(myoutput.beta, myoutput.sd_beta)
    print "beta = ",  beta_u
    print "reduced chi-square =", myoutput.res_var
    degrees_of_freedom = myoutput.sum_square/myoutput.res_var
    p_value = 1-scipy.stats.chi2.cdf(myoutput.sum_square, degrees_of_freedom)
    print "p-value =", p_value
    return beta_u
예제 #28
0
파일: parse.py 프로젝트: bainbrid/susy_work
def get_contents( h ) :
    if h is None : return None
    values = np.zeros((h.GetNbinsX(),h.GetNbinsY()))
    errors = np.zeros((h.GetNbinsX(),h.GetNbinsY()))
    tuple = weight(h) # val,err,wei
    for i in range(h.GetNbinsX()) :
        for j in range(h.GetNbinsY()) :
            val = h.GetBinContent(i+1,j+1)
            err = h.GetBinError(i+1,j+1) 
            values[i][j] = val
            errors[i][j] = err
            wei = err*err/val if val > 0. else tuple[2]
            entries = int(abs(val/wei if wei > 0. else val))
            if entries < 10 : 
                max_err = pois_h[entries] 
                if pois_l[entries] > pois_h[entries] : 
                    max_err = pois_l[entries]
                errors[i][j] = max_err*wei
    mhtmet = []
    alphat = []
    for i in range(h.GetNbinsX()) :
        mhtmet.append(h.GetXaxis().GetBinLowEdge(i+1))
    #mhtmet.append(h.GetXaxis().GetBinUpEdge(h.GetNbinsX()))
    for j in range(h.GetNbinsY()) :
        alphat.append(h.GetYaxis().GetBinLowEdge(j+1))
    #alphat.append(h.GetYaxis().GetBinUpEdge(h.GetNbinsY()))
    temp = unumpy.uarray(values,errors)
    return temp#(mhtmet,alphat,temp)
예제 #29
0
def import_data_from_objLog(FilesList, Objects_Include, pv):
    
    
    List_Abundances     = ['OI_HI', 'NI_HI', 'SI_HI', 'SI_HI_ArCorr', 'Y_Mass_O', 'Y_Mass_S', 'Y_Inference_O', 'Y_Inference_S']
    #List_Abundances    = ['OI_HI', 'NI_HI', 'SI_HI', 'SI_HI_ArCorr', 'Y_Mass_O', 'Y_Mass_S', 'Y_inf_O', 'Y_inf_S']

    #Dictionary of dictionaries to store object abundances
    Abund_dict = OrderedDict()
    for abund in List_Abundances:
        Abund_dict[abund] = OrderedDict()

    #Loop through files
    for i in range(len(FilesList)):
        #Analyze file address
        CodeName, FileName, FileFolder  = pv.Analyze_Address(FilesList[i])  
      
        if CodeName in Objects_Include:
            #Loop through abundances in the log
            for abund in List_Abundances:
                Abund_Mag = pv.GetParameter_ObjLog(CodeName, FileFolder, Parameter = abund, Assumption = 'float')
                #If the abundance was measure store it 
                if Abund_Mag != None:
                    Abund_dict[abund][CodeName] = Abund_Mag
        
    #Dictionary to store objects with abundances pairs for regressions. 
    #As an initial value for the keys we define the abundances we want to use for the regression
    Abundances_Pairs_dict = OrderedDict()
    Abundances_Pairs_dict['O_Regression']                   = ('OI_HI','Y_Mass_O')      
    Abundances_Pairs_dict['N_Regression']                   = ('NI_HI','Y_Mass_O')      
    Abundances_Pairs_dict['S_Regression']                   = ('SI_HI','Y_Mass_S')      
    Abundances_Pairs_dict['S_ArCorr_Regression']            = ('SI_HI_ArCorr','Y_Mass_S')
    Abundances_Pairs_dict['O_Regression_Inference']         = ('OI_HI','Y_Inference_O')      
    Abundances_Pairs_dict['N_Regression_Inference']         = ('NI_HI','Y_Inference_O')      
    Abundances_Pairs_dict['S_Regression_Inference']         = ('SI_HI','Y_Inference_S')      
    Abundances_Pairs_dict['S_ArCorr_Regression_Inference']  = ('SI_HI_ArCorr','Y_Inference_S') 
        
    #Loop through the regression lists and get objects with both abundances observed
    for j in range(len(Abundances_Pairs_dict)):
        
        #Get the elements keys for the regression
        Vector, Elem_X, Elem_Y = Abundances_Pairs_dict.keys()[j], Abundances_Pairs_dict.values()[j][0], Abundances_Pairs_dict.values()[j][1]
        
        #Determine objects with both abundances observed
        Obj_vector  = intersect1d(Abund_dict[Elem_X].keys(), Abund_dict[Elem_Y].keys(), assume_unique = True)
        X_vector    = zeros(len(Obj_vector))
        Y_vector    = zeros(len(Obj_vector))
        X_vector_E  = zeros(len(Obj_vector))
        Y_vector_E  = zeros(len(Obj_vector))
                        
        #Generate abundances vectors
        for z in range(len(Obj_vector)):  
            X_vector[z] = nominal_values(Abund_dict[Elem_X][Obj_vector[z]])
            X_vector_E[z] = std_devs(Abund_dict[Elem_X][Obj_vector[z]])            
            Y_vector[z] = nominal_values(Abund_dict[Elem_Y][Obj_vector[z]])
            Y_vector_E[z] = std_devs(Abund_dict[Elem_Y][Obj_vector[z]])
    
        Abundances_Pairs_dict[Vector] = (list(Obj_vector), uarray(X_vector, X_vector_E), uarray(Y_vector, Y_vector_E))
        
    return Abundances_Pairs_dict
def test_nom_ueig():
    sA = array([[1, 2], [3, 4]])
    A = array([[0.1, 0.2], [0.1, 0.3]])
    w, v = eig(A)
    uA = uarray((A, sA))
    uw, uv = ueig(A)
    assert nominal_values(uw) == w
    assert nominal_values(uv) == v
예제 #31
0
 def setUp(self):
     self.x = numpy.array([[-1.0], [0.0], [1.0]])
     self.y = unumpy.uarray([2.0, 1.0, 6.0], [0.1, 0.1, 0.1])
     self.a = 1.0
     self.b = numpy.array([2.0])
     self.c = numpy.array([[3.0]])
예제 #32
0
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
from uncertainties import ufloat
import uncertainties.unumpy as unp
import scipy.constants as const
from pylab import *

#C Wert 3
C20 = np.array([399 * 10**(-9), 450 * 10**(-9), 750 * 10**(-9)])
R3 = np.array([203, 222, 323])
R4 = np.array([797, 778, 677])

C2 = unp.uarray(C20, 0.002 * C20)
X = unp.uarray(R4 / R3, (R4 / R3) * 0.005)  #R4/R3

Cx = C2 * X

M = np.mean(Cx)  #Mittelwert
V = np.var(Cx)  #Fehler des Mittelwerts
F = V**(0.5) / 3**(0.5)

print('Mittelwert Cx: ', "{:.12f}".format(M))
print('Fehler des Mittelwerts Cx: ', "{:.12f}".format(F))
예제 #33
0
            differenz[i] = f_array[i]
        else:
            differenz[i] = f_array[i] - f_array[i-1]
    print(differenz)
    differenz *= 10**6
    L = c/((np.sum(differenz)/4)*2)
    print('L = ', L)
    print('Abweichung = ', abweichungen(L_vergleich, L))


if __name__ == '__main__':
    # polarisation
    I = np.genfromtxt('daten/polarisation.txt',
                      unpack='True')
    phi = np.linspace(0, 180, 19)
    phi = unp.uarray(phi, 1)
    phi_rad = (phi/360)*2*np.pi
    I = unp.uarray(I, 0.005)
    werteZuTabelle(noms(phi).astype(int), noms(I), rundungen=[0, 2])
    plot(phi_rad, I, "Polarisation", "polarisation", r'$\phi/\si{\radian}$', r'$I/\si{\micro\ampere}$', fitfunktion_pol,
         [0.8, 2, 0], ["I_0", "phi_verschieb", "m"])



    # moden
    x, I = np.genfromtxt('daten/tem00.txt',
                         unpack='True')
    x = unp.uarray(x, 0.5)
    I = unp.uarray(I, 0.01)
    werteZuTabelle(noms(x).astype(int), noms(I), rundungen=[0, 3])
    plot(x, I, r'TEM$_{00}$', 'grundmode', r'$x/\si{\milli\meter}$',
예제 #34
0
                     axis=1)
    filenames = list(np.array(elements, dtype=object)[:, 0]) + legierungen
    for i in range(len(filenames)):
        np.savetxt('data/' + filenames[i] + '.txt',
                   data[:, 2 * i:2 * i + 2],
                   delimiter='\t',
                   header='E [eV]\tn [1/s]')

#####
# Kombiniertes Spektrum
#####

data = np.array(
    [np.loadtxt('data/' + e[0] + '.txt', skiprows=1) for e in elements],
    dtype=object)
data[:, :, 1] = unp.uarray(data[:, :, 1], data[:, :, 1] / np.sqrt(180))

plt.clf()
plt.title(u'Diagramm 3.1: Röntgenfluoreszenzspektrum verschiedener Elemente')
plt.xlabel('Strahlungsenergie $E \, [keV]$')
plt.ylabel(u'Zählrate ' + r'$n \, [\frac{Ereignisse}{s}]$')
for i in range(data.shape[0]):
    p = papstats.plot_data(data[i, :, 0],
                           data[i, :, 1],
                           label=elements[i][0] + ' (' + str(elements[i][1]) +
                           ')',
                           elinewidth=0.5,
                           capsize=4)
    plt.fill_between(data[i, :, 0],
                     0,
                     unp.nominal_values(data[i, :, 1]),
예제 #35
0
    F = 130 * 10**(-3)  # meter

    def uncertainty_theta(theta):
        print('Delta theta in deg: ',
              np.degrees(theta * (lam_2 - lam_1) / lam_m * np.tan(theta)))
        return np.radians(1) * np.ones(
            len(theta)) + theta * (lam_2 - lam_1) / lam_m * np.tan(theta)

    theta_1_deg = 0.5 * np.array(
        [44.5, 51.5, 75.0, 90.6, 96.6, 117.5, 135.0, 144.6])  #mm
    theta_2_deg = 0.5 * np.array([
        29.0, 47.5, 57.0, 69.6, 76.5, 88.0, 94.7, 106.5, 113.4, 126.5, 135.5,
        156.0
    ])  #mm
    theta_1 = np.radians(theta_1_deg)
    theta_1 = unumpy.uarray(theta_1, uncertainty_theta(theta_1))
    theta_2 = np.radians(theta_2_deg)
    theta_2 = unumpy.uarray(theta_2, uncertainty_theta(theta_2))

    def gittertest(m, theta):
        return m / (unumpy.sin(theta)**2)

    def gitterabstand(lam, m, theta):
        return np.sqrt(m) * (lam / 2) / unumpy.sin(theta)

    def linear_func(x, a, b):
        return a * x + b

    def output(n_refl,
               gitter,
               theta,
예제 #36
0
print(peak_two_3mm)
print(peak_two_9mm)
print(peak_two_12mm)
print()
Aufspaltung = [
    peak_two_3mm - peak_one_3mm, peak_two_9mm - peak_one_9mm,
    peak_two_12mm - peak_one_12mm
]
for i in Aufspaltung:
    print(i)
Dicke = [3, 9, 12]

x_plot = np.linspace(3, 12, 2)

params, covar_matrix = curve_fit(linear, Dicke, Aufspaltung)

error = np.sqrt(np.diag(covar_matrix))

uparams = unp.uarray(params, error)

for i in range(2):
    print(uparams[i])

plt.figure()
plt.plot(Dicke, Aufspaltung, "rx")
plt.plot(x_plot, linear(x_plot, *params))
plt.xlabel("d / mm")
plt.ylabel(r"$\Delta$ f / Hz")
#plt.savefig("../latex-template/figure/Peak_Aufspaltung.pdf")
plt.close()
예제 #37
0
import matplotlib.pyplot as plt
import numpy as np
import uncertainties.unumpy as unp
from scipy.optimize import curve_fit
from uncertainties import correlated_values, correlation_matrix
from uncertainties import ufloat

Uio, tio = np.genfromtxt('5awerteoben.txt', unpack=True)
Uiu, tiu = np.genfromtxt('5awerteunten.txt', unpack=True)
Uio /= 1000
Uiu /= 1000
tiu /= 1000000
tio /= 1000000
U = np.append(Uio, Uiu)
t = np.append(tio, tiu)
Uer = unp.uarray(U, 5e-5)
ter = unp.uarray(t, 1e-7)
#UUo = np.log((np.absolute(U[0 : -3])))


def f1(x, a, b):
    return a * np.exp(-2 * np.pi * x * b)


oparam, ocvar = curve_fit(f1, tio, Uio)  #oben

uparam, ucvar = curve_fit(f1, tiu[3:-1], Uiu[3:-1])  #unten

oparams = correlated_values(oparam, ocvar)
uparams = correlated_values(uparam, ucvar)
예제 #38
0
d_LiF *= 10**(-12)
alpha = 7.297 * 10**(-3)
h_eV = 4.1357 * 10**(-15)

# read vals
theta_zn, N_zn = np.genfromtxt('Zink.dat', unpack=True)
theta_ga, N_ga = np.genfromtxt('Gallium.dat', unpack=True)
theta_br, N_br = np.genfromtxt('Brom.dat', unpack=True)
theta_rb, N_rb = np.genfromtxt('Rubidium.dat', unpack=True)
theta_st, N_st = np.genfromtxt('Strontium.dat', unpack=True)
theta_zk, N_zk = np.genfromtxt('Zirkonium.dat', unpack=True)

names = ['Zink', 'Gallium', 'Brom', 'Rubidium', 'Strontium', 'Zirkonium']
thetas = [theta_zn, theta_ga, theta_br, theta_rb, theta_st, theta_zk]
Ns = [N_zn, N_ga, N_br, N_rb, N_st, N_zk]
theos = unp.uarray([9668.55, 10377.76, 13483.86, 15207.74, 16115.26, 18008.15],
                   [15, 16, 19, 22, 23, 26])
Zs = [30, 31, 35, 37, 38, 40]

E_K_array = np.empty(len(Zs))
i = 0

# make loop for all other stuffs
for name, theta, N, Z, theo in zip(names, thetas, Ns, Zs, theos):
    print(f'-> {name}')

    # make plot
    plt.figure()
    plt.plot(theta, N, 'b.', label=f'{name}')
    plt.xlabel('Theta [°]')
    plt.ylabel('Anzahl Impulse')
    plt.legend()
예제 #39
0
    def get_results(self):
        # planet search files
        fs = np.array(glob.glob('%s/EPIC_*/K2LC_-00099' % self.folder))
        self.fs, self.epicnums = [], np.zeros(0)

        # detected planet params
        self.Ndetected, self.params_guess = np.zeros(0), np.zeros((0, 4))
        self.params_optimized = np.zeros((0, 5))
        self.Ps, self.e_Ps = np.zeros(0), np.zeros(0)
        self.rps, self.e_rps = np.zeros(0), np.zeros(0)

        # POI params
        self.cond_vals, self.cond_free_params = np.zeros((0, 7)), np.zeros(
            (0, 7))

        # stellar params
        self.Kepmags, self.efs = np.zeros(0), np.zeros(0)
        self.Mss, self.e_Mss = np.zeros(0), np.zeros(0)
        self.Rss, self.e_Rss = np.zeros(0), np.zeros(0)
        self.Teffs, self.e_Teffs = np.zeros(0), np.zeros(0)
        self.loggs, self.e_loggs = np.zeros(0), np.zeros(0)

        for i in range(fs.size):

            print float(i) / fs.size, fs[i]
            d = loadpickle(fs[i])
            if d.DONE:

                for j in range(d.Ndet + 1):

                    self.fs.append(fs[i])
                    self.epicnums = np.append(self.epicnums, d.epicnum)
                    self.Ndetected = np.append(self.Ndetected, d.Ndet)
                    self.Kepmags = np.append(self.Kepmags, d.Kepmag)
                    self.efs = np.append(self.efs, d.ef.mean())
                    self.Mss = np.append(self.Mss, d.Ms)
                    self.e_Mss = np.append(self.e_Mss, d.e_Ms)
                    self.Rss = np.append(self.Rss, d.Rs)
                    self.e_Rss = np.append(self.e_Rss, d.e_Rs)
                    self.Teffs = np.append(self.Teffs, d.Teff)
                    self.e_Teffs = np.append(self.e_Teffs, d.e_Teff)
                    self.loggs = np.append(self.loggs, d.logg)
                    self.e_loggs = np.append(self.e_loggs, d.e_logg)

                    # save parameter guesses of detected planets
                    params = d.params_guess[j-1] if j > 0 \
                             else np.repeat(np.nan,4)
                    self.params_guess = np.append(self.params_guess,
                                                  params.reshape(1, 4),
                                                  axis=0)

                    # save optimized parameters
                    params_opt = d.params_optimized[j-1] if j > 0 \
                                 else np.repeat(np.nan,5)
                    params_res = d.params_results[j-1] if j > 0 \
                                 else np.repeat(np.nan,15).reshape(3,5)
                    assert params_res.shape == (3, 5)
                    self.params_optimized = np.append(self.params_optimized,
                                                      params_opt.reshape(1, 5),
                                                      axis=0)

                    # save transit vetting results
                    P = params[0]
                    Pss = d.params_guess_priorto_confirm[:, 0]
                    if Pss.size > 0:
                        g = abs(Pss - P) == np.min(abs(Pss - P))
                        assert g.sum() in range(2)
                        cond_vals = d.transit_condition_values[g] if j > 0 \
                                       else np.repeat(np.nan,7)
                    else:
                        cond_vals = np.repeat(np.nan, 7)
                    self.cond_vals = np.append(self.cond_vals,
                                               cond_vals.reshape(1, 7),
                                               axis=0)
                    self.cond_free_params = np.append(
                        self.cond_free_params,
                        d.transit_condition_free_params.reshape(1, 7),
                        axis=0)

                    # save periods and planets radii
                    self.Ps = np.append(self.Ps, params_opt[0])
                    self.e_Ps = np.append(self.e_Ps,
                                          get_1sigma(params_res[:, 0]))
                    rpRs = unp.uarray(params_opt[3],
                                      get_1sigma(params_res[:, 3]))
                    Rs = unp.uarray(d.Rs, d.e_Rs)
                    rp, e_rp = rpRs2rp(rpRs, Rs)
                    self.rps = np.append(self.rps, rp)
                    self.e_rps = np.append(self.e_rps, e_rp)

        _, self.unique_inds = np.unique(self.epicnums, return_index=True)
        self.Nstar = self.unique_inds.size
        assert self.unique_inds.size == self.Nstar
        self.Nplanets = self.Ndetected[self.unique_inds].sum()
        self.fs = np.array(self.fs)
예제 #40
0
abstand = abstand + hoehe_zylinder

abstand *= 1e-2
schwingungsdauer *= (1 / 5)
schwingungsdauer_hilf = []
schwingungsdauer_abweichung = []

#print(abstand[::3])
for i in range(len(schwingungsdauer))[::3]:
    schwingungsdauer_hilf.append(np.mean(schwingungsdauer[i:i + 3]))
    schwingungsdauer_abweichung.append(
        1 / (np.sqrt(len(schwingungsdauer[i:i + 3]))) *
        np.std(schwingungsdauer[i:i + 3]))
schwingungsdauer_mittel = np.array(schwingungsdauer_hilf)
schwingungsdauer_u = unp.uarray(schwingungsdauer_hilf,
                                schwingungsdauer_abweichung)
print(schwingungsdauer_u)
#print('Zeitlichesmittel_abweichung ', schwingungsdaer_abweichung_mitt)


def f(m, u, b):
    return m * u + b


params_p, covarian = curve_fit(f, abstand[::3]**2, schwingungsdauer_mittel**2)


def linregress(x, y):
    assert len(x) == len(y)

    x, y = np.array(x), np.array(y)
예제 #41
0
N_E = np.genfromtxt('scripts/RolfBlank/0.Spe', unpack=True)
x = np.linspace(0, len(N_E), len(N_E))
E = 662 / 113.48 * x

plt.cla()
plt.clf()
plt.plot(E, N_E, 'r-', label=r'Energiespektrum')
plt.xlabel(r'$E/\si{\kilo\electronvolt}$')
plt.ylabel(r'N')
plt.xlim(0, 800)
plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08)
plt.legend(loc='best')
plt.savefig('build/Energiespektrum.pdf')

#Würfel 1, Bestimmung von I_0
I0_gerade = unp.uarray(50636, 254) / 300
print('I0_gerade', I0_gerade)
I0_schraeg1 = unp.uarray(16660, 146) / 100
I0_schraeg2 = unp.uarray(16417, 145) / 100
#I0_schraeg = np.mean([I0_schraeg1,I0_schraeg2])
I0_schraeg = avg_and_sem([noms(I0_schraeg1), noms(I0_schraeg2)])
I0_schraeg = unp.uarray(I0_schraeg[0], I0_schraeg[1])
print('I0_schraeg', I0_schraeg)

makeTable([
    noms([I0_gerade * 300, I0_schraeg1 * 100, I0_schraeg2 * 100]),
    stds([I0_gerade * 300, I0_schraeg1 * 100, I0_schraeg2 * 100]),
    [300, 100, 100],
    noms([I0_gerade, I0_schraeg1, I0_schraeg2]),
    stds([I0_gerade, I0_schraeg1, I0_schraeg2])
], r'\multicolumn{2}{c}{' + r'$N_0$' + r'} & {' +
예제 #42
0
f1 = '/media/naikymen/SD64/Unsam/FQ/TP4 2016/Errores/vol08.csv'
f2 = '/media/naikymen/SD64/Unsam/FQ/TP4 2016/Errores/vol008.csv'
f3 = '/media/naikymen/SD64/Unsam/FQ/TP4 2016/Errores/abs.csv'
f4 = '/media/naikymen/SD64/Unsam/FQ/TP4 2016/Errores/volAgua.csv'
f5 = '/media/naikymen/SD64/Unsam/FQ/TP4 2016/Errores/volVBC.csv'
f6 = '/media/naikymen/SD64/Unsam/FQ/TP4 2016/Errores/vol8.csv'

d1 = genfromtxt(f1, delimiter=',')
d2 = genfromtxt(f2, delimiter=',')
d3 = genfromtxt(f3, delimiter=',')
d4 = genfromtxt(f4, delimiter=',')
d5 = genfromtxt(f5, delimiter=',')
d6 = genfromtxt(f6, delimiter=',')

ar8 = unumpy.uarray(d6[:, 0], d6[:, 1])
ar08 = unumpy.uarray(d1[:, 0], d1[:, 1])
ar008 = unumpy.uarray(d2[:, 0], d2[:, 1])
arabs = unumpy.uarray(d3[:, 0], d3[:, 1])
aragua = unumpy.uarray(d4[:, 0], d4[:, 1])
arVBC = unumpy.uarray(d5[:, 0], d4[:, 1])

vol = (ar8 + ar08 + ar008 + aragua + arVBC)
mol = (ar8 * 0.8 + ar08 * 0.08 + ar008 * 0.008)

conc = mol / vol

mT = unumpy.matrix(conc)
filename = "resconc.csv"
numpy.savetxt(filename, mT, fmt='%r', delimiter='\n')
예제 #43
0
def plot_u(cal_file, fm_file, offset_file, description, accidental_offset,
           results_file):
    M = np.genfromtxt(cal_file)
    N = np.genfromtxt(fm_file)
    O = np.genfromtxt(offset_file)

    i_helm = M[:, 1]  #current applied to helmholtz for calibration measurement
    b_helm = M[:,
               2]  #field applied to helmholtz coil for calibration measurement
    p, cov = np.polyfit(
        i_helm, b_helm, 1, cov=True
    )  #fit a line to calibration measurement so that we get a calibration

    i_fm = N[:, 1]  #current applied to helmmholtz for shielding measurement
    b_fm = unumpy.uarray(
        N[:, 2], 0.0005
    ) - accidental_offset  #field measured inside of ferromagnet shield

    B_earth = np.polyval(
        p, 0
    )  #We get the Earths magnetic field from i=0 of the Helmholtz calibration
    B_fm_no_i = unumpy.uarray(np.mean(O[:, 2]), np.std(
        O[:, 2]))  #Get average and error for initial magnetization

    mag = B_fm_no_i - B_earth  #initial magnetization is the field inside of the ferromagnet before any field is applied minus the earths magnetic field

    Bin = b_fm - mag  #internal magnetization is the measured internal field minus the initial magnetization. This correction might not be necessary for a soft ferromagnet

    Bext = unumpy.uarray(np.polyval(p, i_fm), 0.0005)  #external field
    Bext_nom = unumpy.nominal_values(Bext)
    Bext_err = unumpy.std_devs(Bext)
    B = Bext / Bin
    c = a / b
    u = (-2 * B + c**2 - 2 * unumpy.sqrt(B**2 - B * c**2 - B + c**2) +
         1) / (c**2 - 1)

    u_nom = unumpy.nominal_values(u)
    u_err = unumpy.std_devs(u)

    #cakculate uerr with just point to point uncertainties. I define this as just
    #uncertainty from the field measurements
    u_pp = (-2 * B + c.nominal_value**2 - 2 *
            unumpy.sqrt(B**2 - B * c.nominal_value**2 - B + c.nominal_value**2)
            + 1) / (c.nominal_value**2 - 1)

    #calculate uerr from just geometry uncertainties
    u_geom = (-2 * unumpy.nominal_values(B) + c**2 - 2 * unumpy.sqrt(
        unumpy.nominal_values(B)**2 - unumpy.nominal_values(B) * c**2 -
        unumpy.nominal_values(B) + c**2) + 1) / (c**2 - 1)

    ##obtain uncertainties from field
    u_err_pp = unumpy.std_devs(u_pp)

    ##obtain uncertainties from geometry
    u_err_geom = unumpy.std_devs(u_geom)

    with open(results_file, "w") as myfile:
        myfile.write('#Bext, sig_Bext, ur, sig_ur, sig_ur_pp, sig_ur_corr\n')
        for j in range(0, len(u_nom)):
            myfile.write('%s\t%s\t%s\t%s\t%s\t%s\n' %
                         (Bext_nom[j], Bext_err[j], u_nom[j], u_err[j],
                          u_err_pp[j], u_err_geom[j]))

    plt.errorbar(Bext_nom, u_nom, u_err, marker='.', label=description)
예제 #44
0
    plt.close()
    return (unp.uarray(params[1], np.sqrt(np.diag(errors)[1])))


# RECHNEN

# berechne zugehoerige winkel theta
meta_winkel = winkel(camera_rad, r_meta)

# gitterkonstanten bcc metall
gk_m_bcc = gitter(bcc, wavelen, meta_winkel)
gk_m_fcc = gitter(fcc, wavelen, meta_winkel)
gk_m_dia = gitter(dia, wavelen, meta_winkel)

a_m_bcc = unp.uarray(
    gk_m_bcc,
    gk_korrektur_a(gk_m_bcc, meta_winkel, proben_rad, camera_rad) +
    gk_korrektur_v(gk_m_bcc, meta_winkel, camera_rad, v))
a_m_fcc = unp.uarray(
    gk_m_fcc,
    gk_korrektur_a(gk_m_fcc, meta_winkel, proben_rad, camera_rad) +
    gk_korrektur_v(gk_m_fcc, meta_winkel, camera_rad, v))
a_m_dia = unp.uarray(
    gk_m_dia,
    gk_korrektur_a(gk_m_dia, meta_winkel, proben_rad, camera_rad) +
    gk_korrektur_v(gk_m_dia, meta_winkel, camera_rad, v))

# auf konsole ausgeben
#
# print("\n\n\nwinkel metall:\n")
# for element in meta_winkel:
#     print(element)
예제 #45
0
파일: test_EP.py 프로젝트: jacob975/TATIRP
def mag2flux(mag, err_mag):
    umag = unumpy.uarray(mag, err_mag)
    uflux = 10**(-0.4 * umag)
    flux = unumpy.nominal_values(uflux)
    err_flux = unumpy.std_devs(uflux)
    return flux, err_flux
예제 #46
0
def salz_auswerten(atomfakt, fobj_out):
    lit_cae_clo = 4.119e-10  #wiki
    ss = generate_miller(
        10, s_s, 1,
        atomfakt)  # atomfakt = 1 -> gleiche vorfakoren, 2 -> fuer ungleiche
    ss = ss[:len(salz_winkel), :]
    # print("len winkel",len(salz_winkel))
    # print("len ss",len(ss[:,1]))
    # print("ss=",ss)

    cc = generate_miller(10, cs_cl, 1, atomfakt)
    cc = cc[:len(salz_winkel), :]

    # ss = np.array([[1, 1, 1],#3 ggu und guu verboten #stein_salz
    #               [0, 0, 2],  # 4
    #               [0, 2, 2],  # 8
    #               [1, 1, 3],  # 11
    #               [2, 2, 2],  # 12
    #               [0, 0, 4],  # 16
    #               [1, 3, 3],  # 19
    #               [0, 2, 4],  # 20
    #               [2, 2, 4],  # 24
    #               [3, 3, 3],  # 27
    #               [0, 4, 4],  # 32
    #               [1, 3, 5],  # 35
    #               [2, 4, 4],  # 36
    #               [0, 2, 6],  # 40
    #               [3, 3, 5],  # 43
    #               [4, 4, 4],  # 48
    #               [1, 5, 5],  # 51
    #               [0, 4, 6],  # 52
    #               [2, 4, 6],  # 56
    #               [3, 5, 5],  # 59
    #               [4, 4, 6],  # 68
    #               [0, 6, 6],  # 72
    #               [5, 5, 5],  # 75
    #                ])

    #
    # cc = np.array([[0, 0, 1],#1
    #                [0, 1, 1],#2
    #                [1, 1, 1],#3
    #                [0, 0, 2],#4 abgeschwächt
    #                [0, 1, 2],#5
    #                [1, 1, 2],#6
    #                [0, 2, 2],#8 abgeschwächt
    #                [0, 0, 3],#9
    #                [0, 1, 3],#10
    #                [1, 1, 3],#11
    #                [2, 2, 2],#12
    #                [0, 2, 3],#13
    #                [1, 2, 3],#14
    #                [0, 0, 4],#16
    #                [0, 1, 4],#17
    #                [1, 1, 4],#18
    #                [1, 3, 3],#19
    #                [0, 2, 4],#20
    #                [1, 2, 4],#21
    #                [2, 3, 3],#22
    #                [2, 2, 4],#24
    #                [0, 0, 5],#25
    #                [0, 1, 5],#26
    #               ])

    zb = generate_miller(10, z_b, 1, atomfakt)
    zb = zb[:len(salz_winkel), :]

    # zb = np.array([[1, 1, 1],#3
    #               [0, 0, 2],#4
    #               [0, 2, 2],#8
    #               [1, 1, 3],#11
    #               [2, 2, 2],#12
    #               [0, 0, 4],#16
    #               [1, 3, 3],#19
    #               [0, 2, 4]#20
    #  ])

    fluor = generate_miller(10, fluorit, 1, atomfakt)
    fluor = fluor[:len(salz_winkel), :]

    gk_s_ss = gitter(ss, wavelen, salz_winkel)
    gk_s_cc = gitter(cc, wavelen, salz_winkel)
    gk_s_fluor = gitter(fluor, wavelen, salz_winkel)
    gk_s_zb = gitter(zb, wavelen, salz_winkel)

    # gk_m_dia = gitter(dia, wavelen, salz_winkel)

    a_s_ss = unp.uarray(
        gk_s_ss,
        gk_korrektur_a(gk_s_ss, salz_winkel, proben_rad, camera_rad) +
        gk_korrektur_v(gk_s_ss, salz_winkel, camera_rad, v))
    a_s_cc = unp.uarray(
        gk_s_cc,
        gk_korrektur_a(gk_s_cc, salz_winkel, proben_rad, camera_rad) +
        gk_korrektur_v(gk_s_cc, salz_winkel, camera_rad, v))
    a_s_fluor = unp.uarray(
        gk_s_fluor,
        gk_korrektur_a(gk_s_fluor, salz_winkel, proben_rad, camera_rad) +
        gk_korrektur_v(gk_s_fluor, salz_winkel, camera_rad, v))
    a_s_zb = unp.uarray(
        gk_s_zb,
        gk_korrektur_a(gk_s_zb, salz_winkel, proben_rad, camera_rad) +
        gk_korrektur_v(gk_s_zb, salz_winkel, camera_rad, v))

    # a_s_dia=unp.uarray(gk_s_dia,gk_korrektur_a(gk_s_dia, salz_winkel, proben_rad, camera_rad) + gk_korrektur_v(gk_s_dia, salz_winkel, camera_rad, v))

    a_ss_end = gk_plot("ss" + str(atomfakt), salz_winkel, a_s_ss, gerade,
                       winkel_korrektur, [0, 23])
    a_cc_end = gk_plot("cc" + str(atomfakt), salz_winkel, a_s_cc, gerade,
                       winkel_korrektur, [0, 23])
    a_fluor_end = gk_plot("fluor" + str(atomfakt), salz_winkel, a_s_fluor,
                          gerade, winkel_korrektur, [0, 23])
    a_zb_end = gk_plot("zb" + str(atomfakt), salz_winkel, a_s_zb, gerade,
                       winkel_korrektur, [0, 23])

    fobj_out.write("\nFall:" + str(atomfakt) + "\n")
    fobj_out.write("Salz ss a=" + str(a_ss_end) + "\n")
    fobj_out.write("Salz Fluorit a=" + str(a_fluor_end) + "\n")
    fobj_out.write("Salz zb =" + str(a_zb_end) + "\n")
    fobj_out.write("Salz cc =" + str(a_cc_end) + "\n")
    lit_LiI = 6e-10
    lit_NH4Cl = 3.87e-10
    if (atomfakt == 2):
        fobj_out.write(
            "\n\nSteinsalz LiI ist auserwählt!!!!! Die relative Abweichung beträgt:"
            + str((a_ss_end - lit_LiI) / lit_LiI) + "\n")
        fobj_out.write(
            "\n\nNH4CL ist auserwählt!!!!! Die relative Abweichung beträgt:" +
            str((a_cc_end - lit_NH4Cl) / lit_NH4Cl) + "\n")

    tabelle_fertig(r_salz, salz_winkel, ss, a_s_ss, "ss" + str(atomfakt))
    tabelle_fertig(r_salz, salz_winkel, cc, a_s_cc, "cc" + str(atomfakt))
    tabelle_fertig(r_salz, salz_winkel, fluor, a_s_fluor,
                   "fluor" + str(atomfakt))
    tabelle_fertig(r_salz, salz_winkel, zb, a_s_zb, "zb" + str(atomfakt))

    print("Gleich=1, Ungleich=2 =>", atomfakt)
    print(" \nSalz ss", a_ss_end)
    print(" \nSalz cc", a_cc_end)
    print(" \nSalz fluor", a_fluor_end)
    print(" \nSalz zb", a_zb_end)
예제 #47
0
# # 3. Setup data

# Read data file.  Data points are stored in `csv` files.

# In[9]:

data = pd.read_csv('./data/Lundin2007.csv')

# Make error propagation possible.

# In[10]:

v = {
    'en100':
    unp.uarray(data['v(en100)'][~np.isnan(data['v(en100)'])],
               data['sv(en100)'][~np.isnan(data['v(en100)'])]),
    'en91':
    unp.uarray(data['v(en91)'], data['sv(en91)']),
    'en85':
    unp.uarray(data['v(en85)'], data['sv(en85)'])
}
p_org = {
    'en100':
    unp.uarray(data['p(en100)'][~np.isnan(data['v(en100)'])],
               data['sp(en100)'][~np.isnan(data['v(en100)'])]),
    'en91':
    unp.uarray(data['p(en91)'], data['sp(en91)']),
    'en85':
    unp.uarray(data['p(en85)'], data['sp(en85)'])
}
v_std = {}
예제 #48
0
    def plot_on(
        self,
        ax1: plt.axis,
        ax2,
        style="stacked",
        ylabel="Events",
        sum_color=plot_style.KITColors.kit_purple,
        draw_legend: bool = True,
        legend_inside: bool = True,
    ):
        bin_edges, bin_mids, bin_width = self._get_bin_edges()

        self._bin_edges = bin_edges
        self._bin_mids = bin_mids
        self._bin_width = bin_width

        sum_w = np.sum(np.array([
            binned_statistic(comp.data,
                             comp.weights,
                             statistic="sum",
                             bins=bin_edges)[0]
            for comp in self._mc_components["MC"]
        ]),
                       axis=0)

        sum_w2 = np.sum(np.array([
            binned_statistic(comp.data,
                             comp.weights**2,
                             statistic="sum",
                             bins=bin_edges)[0]
            for comp in self._mc_components["MC"]
        ]),
                        axis=0)

        hdata, _ = np.histogram(self._data_component.data, bins=bin_edges)

        if style.lower() == "stacked":
            ax1.hist(
                x=[comp.data for comp in self._mc_components['MC']],
                bins=bin_edges,
                weights=[comp.weights for comp in self._mc_components['MC']],
                stacked=True,
                edgecolor="black",
                lw=0.3,
                color=[comp.color for comp in self._mc_components['MC']],
                label=[comp.label for comp in self._mc_components['MC']],
                histtype='stepfilled')

            ax1.bar(x=bin_mids,
                    height=2 * np.sqrt(sum_w2),
                    width=self.bin_width,
                    bottom=sum_w - np.sqrt(sum_w2),
                    color="black",
                    hatch="///////",
                    fill=False,
                    lw=0,
                    label="MC stat. unc.")

        if style.lower() == "summed":
            ax1.bar(x=bin_mids,
                    height=2 * np.sqrt(sum_w2),
                    width=self.bin_width,
                    bottom=sum_w - np.sqrt(sum_w2),
                    color=sum_color,
                    lw=0,
                    label="MC")

        ax1.errorbar(x=bin_mids,
                     y=hdata,
                     yerr=np.sqrt(hdata),
                     ls="",
                     marker=".",
                     color="black",
                     label=self._data_component.label)

        y_label = self._get_y_label(False, bin_width, evts_or_cand=ylabel)
        # ax1.legend(loc=0, bbox_to_anchor=(1,1))
        ax1.set_ylabel(y_label, plot_style.ylabel_pos)

        if draw_legend:
            if legend_inside:
                ax1.legend(frameon=False)
                ylims = ax1.get_ylim()
                ax1.set_ylim(ylims[0], 1.4 * ylims[1])
            else:
                ax1.legend(frameon=False, bbox_to_anchor=(1, 1))

        ax2.set_ylabel(r"$\frac{\mathrm{Data - MC}}{\mathrm{Data}}$")
        ax2.set_xlabel(self._variable.x_label, plot_style.xlabel_pos)
        ax2.set_ylim((-1, 1))

        try:
            uhdata = unp.uarray(hdata, np.sqrt(hdata))
            uhmc = unp.uarray(sum_w, np.sqrt(sum_w2))
            ratio = (uhdata - uhmc) / uhdata

            ax2.axhline(y=0, color=plot_style.KITColors.dark_grey, alpha=0.8)
            ax2.errorbar(bin_mids,
                         unp.nominal_values(ratio),
                         yerr=unp.std_devs(ratio),
                         ls="",
                         marker=".",
                         color=plot_style.KITColors.kit_black)
        except ZeroDivisionError:
            ax2.axhline(y=0, color=plot_style.KITColors.dark_grey, alpha=0.8)

        plt.subplots_adjust(hspace=0.08)
예제 #49
0
plt.savefig('plotabbeb.pdf')



Ag , Bg , rg ,pg ,stdg =stats.linregress(1+(1/V),g_abbe)

Bg_fehler=fehler_b(stdg,1+(1/V))

plt.figure(4)
#plt.errorbar(noms(R),noms(N_b) ,xerr=stds(R),yerr=stds(N_b), fmt='cx')
plt.plot(1+(1/V),g_abbe,'rx',label=r'$\mathrm{Messwerte}$')
plt.plot(x,Ag*x+Bg,'b-',label=r'$\mathrm{Ausgleichsfunktion}$')
plt.legend(loc='best')
plt.xlabel(r'$\mathrm{1+\frac{1}{V}}$')
plt.ylabel(r'$\mathrm{Gegenstandweite \ g/mm}$')
plt.savefig('plotabbeg.pdf')

print('\n f_abbe 1+V',Ab,'+-',stdb)
print('h`',Bg,'+-',Bg_fehler)


print('\n f_abbe 1+1/V',Ag,'+-',stdg)
print('h',Bb,'+-',Bb_fehler)

f_g=unp.uarray(Ag,stdg)
f_b=unp.uarray(Ab,stdb)

print((f_g+f_b)/2)

print(np.mean([f_g,f_b]))
예제 #50
0
    ln = (1 / T - 1 / T0) * B
    V_measured = ((np.exp(ln) + 1) / 1023)**(-1)
    V_measured_u = unp.uarray([V_measured], [0.5])

    lnR_R0_u = unp.log(1023 / V_measured_u - 1)

    return lnR_R0_u


"""Calibration -> plots"""
CalibrationFilename = 'Data/MeasurementCalibration2.p'
CalibrationData = pickle.load(open(CalibrationFilename, "rb"))
EstimateB1(CalibrationData)
"""Calibration -> Deming regression"""
CalibrationData = np.array(CalibrationData, dtype=float)
fitparam, b1_std, b0_std = EstimateB_Deming(CalibrationData)
"""Time -> plots"""

#TimeFilename = 'Data/Corrected_MeasurementCalibration2.p'
#TimeData = pickle.load( open(TimeFilename, "rb" ) )

#Time = TimeData[:,0]            #in millis
#Temperature = TimeData[:,2]     #in celsius

#PlotTemperature(Time, Temperature)

print(
    Tgrove_u(293.15 + 0.1,
             Bgrove_u=unp.uarray([4680], [12]),
             T0_u=unp.uarray([298.15], [0.1])))
예제 #51
0
파일: dracht.py 프로젝트: Vector04/Prac2
from data_analysis_tools import *
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from scipy import optimize
from uncertainties import ufloat, unumpy


df = pd.read_csv('data.csv')
print(df)

# Preparing our data
masses = unumpy.uarray(df.iloc[1:, 0].to_numpy(), 0.004)
counts = unumpy.uarray(df.iloc[1:, 1] - 159,
                       np.sqrt(df.iloc[1:, 1]) + np.sqrt(159))
counts_per_m = counts / masses
print(counts_per_m)


def p(d, Eff, a):
    return Eff * (1 - np.exp(-a * d)) / (a * d)


xdata = unumpy.nominal_values(masses)
ydata = unumpy.nominal_values(counts_per_m)
sigma = unumpy.std_devs(counts_per_m)

print(f"{xdata = }")
print(f"{ydata = }")
print(f"{sigma = }")
예제 #52
0
    amplitude_of_peaks.append(amplitude)

    sigma_of_peaks.append(sigma)

    offset_of_peak.append(offset)

    area_under_peak.append(area)

# Save data in table
print(index)

l.Latexdocument(
    filename=abs_path('tabs/europium/peak_charakteristiken_eu.tex')).tabular(
        data=[
            index,
            unp.uarray(noms(amplitude_of_peaks), stds(amplitude_of_peaks)),
            unp.uarray(noms(sigma_of_peaks), stds(sigma_of_peaks)),
            unp.uarray(noms(offset_of_peak), stds(offset_of_peak))
        ],
        header=['Kanal / ', r'A / ', r'\sigma / ', r'\mu / '],
        places=[0, (2.2, 2.2), (1.2, 1.2), (4.2, 1.2)],
        caption='Bestimmte Eigenschaften der Peaks von $^{152}\ce{Eu}$.',
        label='results_peaks_eu')
# ########################################################################### #
# ## --- Linear Regression to get transformations parameters--- ## #
# ########################################################################### #


def g(x, m, b):
    '''Define linear function for Transformation purpose'''
    return m * x + b
예제 #53
0
def main(argv: list) -> int:
    # print(list(get_data(data_folder + "F0004CH1.CSV")))

    # for xdata, ydata in get_all_data(data_folder, range(4, 42 + 1), [18]):
    #     plt.plot(xdata, ydata)
    #     plt.show()
    #
    #     print(xdata)
    #     print(ydata)
    #     print()

    def loading_dgl(t, loading_rate, alpha, t0):
        return (loading_rate / alpha) * (1 - np.exp(-alpha * (t - t0)))

    mask_array = [(6.3, 10), (3.9, 9.9), (0.39, 9.8), (0.29, 10.8), (0.244, 10.67), (3.634, 13.5), (0.2705, 10.4),
                  (-0.195, 10.16), (-0.0872, 10.16), (0.187, 10.7), (0.176, 10.86), (0.2903, 10.48), (0.2384, 10.83),
                  (0.29, 10.0684), (0.304, 10.5282), (0.452, 10.59), (0.344, 10.5), (0.3077, 9.67), (0.332, 10.31),
                  (0.332, 10.5), (0.2856, 10.79), (0.265, 10.369), (0.344, 10.32), (0.288, 10.34)]

    def fitparameter_getter():
        L = []
        delta_L = []
        A = []
        delta_A = []
        N_max = []
        delta_N_max = []

        for i, (xdata, ydata) in enumerate(get_all_data(data_detuning, range(4, 28))):  # oder 28 + 1
            a, b = mask_array[i]
            x, y = zip(*list(get_data("data/detuning_coil_curves/F0028CH1.CSV")))
            y = np.array(y)

            # y = np.where(y < 0.07993, 0.08505, y)
            y = np.mean(y[320:750])  # nominal Background value in volts
            # print(y)
            # y = np.where(y > 0.0542, 0.05055, y)
            y = conv_volts_to_atomnumber(y, 0)
            # print([conv_volts_to_atomnumber(0.5,0),conv_volts_to_atomnumber(0.5,4)])
            # plt.plot(x[320:750], [y]*len(x[320:750]), marker = ".", linewidth=0)
            xdata = np.array(xdata)

            ydata = np.array(ydata)
            ydata = conv_volts_to_atomnumber(ydata, 0)
            ydata = ydata - y
            # print(ydata)
            # ydata = np.where(ydata < 0, 0, ydata)

            omxdata, omydata = xdata, ydata

            # n = 5
            # omydata = rolling_mean(omydata, n)

            @np.vectorize
            def mask(x):
                nonlocal a, b
                return a <= x <= b

            # print(a, b)
            mxdata, mydata = list(omxdata), list(omydata)
            # print(len(mxdata), len(mydata))
            mxdata, mydata = tuple(mask_data(mask, mxdata, mydata))
            popt, pcov = curve_fit(loading_dgl, mxdata, unp.nominal_values(mydata), maxfev=5000)
            # plt.plot(mxdata, loading_dgl(mxdata, *popt), label=r"Loading-Fit-Function $\frac{L}{\alpha}(1-e^{-\alpha x})$")
            # plt.plot(mxdata, unp.nominal_values(mydata), marker='.', linewidth=0, label="measured atom number")
            # # plt.plot(xdata, unp.nominal_values(ydata), marker=".", linewidth=0)
            # plt.xlabel("Time [s]")
            # plt.ylabel("Number of Atoms")
            # plt.title(r"Coil Current: 10.0A and $f_{AOM}=110.75$ Hz")
            # print("L=", popt[0]," alpha=", popt[1], "N_max=", popt[0]/popt[1])
            # plt.legend()
            # plt.show()
            # print(popt[2])
            L.append(popt[0])
            delta_L.append(np.sqrt(pcov[0][0]))
            A.append(popt[1])
            delta_A.append(np.sqrt(pcov[1][1]))
            N_max.append(popt[0] / popt[1])
            delta_N_max.append(
                unp.std_devs(ufloat(popt[0], np.sqrt(pcov[0][0])) / ufloat(popt[1], np.sqrt(pcov[1][1]))))

        return L, delta_L, A, delta_A, N_max, delta_N_max

    L, delta_L, A, delta_A, N_max, delta_N_max = fitparameter_getter()
    print(A)
    print(delta_A)
    print(L)
    print(delta_L)
    print(N_max)



    all_fit_params = []
    all_fit_params.append(A)
    all_fit_params.append(L)
    all_fit_params.append(N_max)
    all_fit_params = np.array(all_fit_params)

    delta_all_fit_params = []
    delta_all_fit_params.append(delta_A)
    delta_all_fit_params.append(delta_L)
    delta_all_fit_params.append(delta_N_max)
    delta_all_fit_params = np.array(delta_all_fit_params)


    def detuning_calculator(x):
        return (2 * x) - 60 - (2 * 85)  # Mhz


    titles = np.array([r"$\alpha \ [\frac{1}{s}]$ vs. Detuning Frequency [MHz]",
                       r"Loss rate L $[\frac{1}{s}]$ vs. Detuning Frequency [MHz]"
                          , r"$N_{max} \ [-]$ vs. Detuning Frequency [MHz]"])
    ylabels = np.array([r"$\alpha \ [\frac{1}{s}]$", r"Loss rate L $[\frac{1}{s}]$", r"$N_{max} \ [-]$"])

    for z in range(1, 4):
        i = 1
        plt.errorbar(detuning_calculator(np.array([109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
                     all_fit_params[z - 1][6 * (i - 1): (6 * i)],
                     label="(9.0 +/- 0.1)A", yerr=delta_all_fit_params[z - 1][6 * (i - 1): (6 * i)], fmt=".")
        plt.xlabel("Detuning [MHz]")
        plt.ylabel(ylabels[z - 1])
        i = 2
        plt.errorbar(detuning_calculator(np.array([109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
                     all_fit_params[z - 1][6 * (i - 1): (6 * i)],
                     label="(9.5 +/- 0.1)A", yerr=delta_all_fit_params[z - 1][6 * (i - 1): (6 * i)], fmt=".")
        i = 3
        plt.errorbar(detuning_calculator(np.array([109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
                     all_fit_params[z - 1][6 * (i - 1): (6 * i)],
                     label="(10.0 +/- 0.1)A", yerr=delta_all_fit_params[z - 1][6 * (i - 1): (6 * i)], fmt=".")
        i = 4
        plt.errorbar(detuning_calculator(np.array([109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
                     all_fit_params[z - 1][6 * (i - 1): (6 * i)],
                     label="(10.35 +/- 0.1)A", yerr=delta_all_fit_params[z - 1][6 * (i - 1): (6 * i)], fmt=".")
        plt.title(titles[z - 1])
        plt.legend()
        plt.show()
    def magnetic_field_gradient(current):
        return (1.1E-6 * (90 * current / (8.5 ** 2))) / (10 ** -6)  # i: current in Ampere, units: mikroT/cm

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(detuning_calculator(np.array(
        [109.75, 110.25, 110.75, 111.25, 111.75, 112.25, 109.75, 110.25, 110.75, 111.25, 111.75, 112.25, 109.75, 110.25,
         110.75, 111.25, 111.75, 112.25, 109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
                   magnetic_field_gradient(np.array(
                       [9, 9, 9, 9, 9, 9, 9.5, 9.5, 9.5, 9.5, 9.5, 9.5, 10, 10, 10, 10, 10, 10, 10.35, 10.35, 10.35,
                        10.35, 10.35, 10.35])), N_max)
    ax.plot(detuning_calculator(np.array(
        [109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
        magnetic_field_gradient(np.array(
            [9, 9, 9, 9, 9, 9])), N_max[0:6], label= "9.0 +/- 0.1 A")
    ax.plot(detuning_calculator(np.array(
        [109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
        magnetic_field_gradient(np.array(
            [9.5, 9.5, 9.5, 9.5, 9.5, 9.5])), N_max[6:12], label= "9.5 +/- 0.1 A")
    ax.plot(detuning_calculator(np.array(
        [109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
        magnetic_field_gradient(np.array(
            [10, 10, 10, 10, 10, 10])), N_max[12:18], label= "10 +/- 0.1 A")
    ax.plot(detuning_calculator(np.array(
        [109.75, 110.25, 110.75, 111.25, 111.75, 112.25])),
        magnetic_field_gradient(np.array(
            [10.35, 10.35, 10.35, 10.35, 10.35, 10.35])), N_max[18:24], label= "10.35 +/- 0.1 A")
    ax.set_xlabel('Detuning Frequency [MHz]')
    ax.set_ylabel(r'Magnetic Field Gradient [$\frac{\mu T}{cm}$]')
    ax.set_zlabel(r'$N_{max}$')
    plt.legend()
    # plt.savefig("3dplot.pdf", format="pdf")
    plt.show()
    # return 0
    titles_load_curve = np.array(
        ["10ms", "5ms", "3ms", "7ms", "9ms", "12ms", "11ms", "13ms", "14ms", "15ms", "16ms", "17ms", "18ms", "19ms",
         "20ms", "21ms", "22ms", "23ms",
         "24ms", "25ms", "26ms", "27ms", "28ms", "29ms", "30ms", "40ms", "50ms", "60ms", "70ms", "80ms", "90ms",
         "100ms"])

    mask_array_N0 = [(-1.14, -0.204), (-1.139, -0.0259), (-1.195, -0.259), (-1.193, -0.244), (-1.138, -0.094),
                     (-1.194, -0.204), (-1.194, -0.2046), (-1.63, -0.26), (-4.36, -0.63), (-4.47, -0.628),
                     (-4.259, -0.408), (-4.369, -0.738), (-4.47, -0.29), (-4.259, -0.628), (-4.369, -0.628),
                     (-4.479, -0.408), (-4.259, -0.408), (-4.479, -0.408), (-4.36, -0.628), (-4.36, -0.298),
                     (-4.479, -0.298), (-8.73, -1.47), (-8.95, -0.59), (-8.739, -0.59), (-8.739, -0.376),
                     (-8.739, -0.59), (-22.29, -1.39), (-22.84, -1.39), (-22.84, -3.04), (-23.0, -3.04),
                     (-22.84, -3.04), (-24.5, -1.39)]
    mask_array_Nmax = [(10.0295, 10.5798), (5.077, 5.796), (3.041, 4.08), (7.058, 7.77), (9.04, 9.86), (12.06, 12.83),
                       (11.075, 11.84), (12.99, 19.98), (14.22, 15.21), (15.108, 16.42), (16.2, 17.74), (17.0, 18.4),
                       (18.18, 19.5), (19.17, 20.61), (20.17, 22.04),
                       (21.16, 22.59), (22.04, 23.58), (22.15, 23.9),
                       (24.13, 25.67), (25.012, 26.99), (26.11, 28.31), (27.35, 29.55), (28.45, 31.09), (29.33, 31.75),
                       (30.43, 33.73), (40.56, 44.08), (50.88, 59.0), (60.23, 67.0), (70.68, 74.0), (81.69, 85.0),
                       (89.9, 94.0), (100.4, 105.0)]

    averages_N0 = []
    std_devs_N0 = []
    averages_Nmax = []
    std_devs_Nmax = []
    for i, (xdata, ydata) in enumerate(get_all_data(data_folder, range(4, 36))):
        a, b = mask_array_N0[i]
        c, d = mask_array_Nmax[i]
        x, y = zip(*list(get_data("data/loading_curves/F0011CH1.CSV")))
        y = np.array(y)
        y = np.mean(y[1000:1800])
        xdata = np.array(xdata)
        xdata = xdata / (10 ** -3)
        ydata = np.array(ydata) - y

        @np.vectorize
        def mask1(x):
            nonlocal a, b
            return a <= x <= b

        @np.vectorize
        def mask2(x):
            nonlocal c, d
            return c <= x <= d

        xdata, ydata = list(xdata), list(ydata)
        m1xdata, m1ydata = tuple(mask_data(mask1, xdata, ydata))
        m2xdata, m2ydata = tuple(mask_data(mask2, xdata, ydata))

        plt.plot(xdata, ydata , marker=".", linewidth=0)
        plt.title(titles_load_curve[i] + " Down time")
        plt.xlabel("time [ms]")
        plt.ylabel("Intensity [a.u.]")
        plt.show()
        averages_N0.append(np.mean(m1ydata))
        std_devs_N0.append(np.std(m1ydata))
        averages_Nmax.append(np.mean(m2ydata))
        std_devs_Nmax.append(np.std(m2ydata))
    # print(averages_N0)
    # print(std_devs_N0)
    uarray_Nmax = unp.uarray(averages_Nmax, std_devs_Nmax)
    uarray_N0 = unp.uarray(averages_N0, std_devs_N0)
    print(uarray_Nmax, uarray_N0)
    down_time = np.array(
        [10, 5, 3, 7, 9, 12, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70,
         80, 90, 100]) * 10 ** -3

    down_time, uarray_N0, uarray_Nmax = tuple(sort_together(down_time, uarray_N0, uarray_Nmax))
    uarray_N0 = np.array(uarray_N0)
    uarray_Nmax = np.array(uarray_Nmax)
    down_time = np.array(down_time)
    plt.errorbar(down_time, unp.nominal_values(uarray_Nmax / uarray_N0), marker=".",
                 yerr=unp.std_devs(uarray_Nmax / uarray_N0), label="data points")

    def fitfunc(x, temp):
        M = (85.4678 * (1.6605e-27))  # kg
        chi = np.sqrt(M / (k * temp)) * ((1.5e-3) / (x))

        return scipy.special.erf(chi) - ((2 / np.sqrt(np.pi)) * chi * np.exp(-(chi ** 2)))

    popt, pcov = curve_fit(fitfunc, down_time, unp.nominal_values(uarray_Nmax / uarray_N0),
                           sigma=unp.std_devs(uarray_Nmax / uarray_N0))

    plt.plot(down_time, fitfunc(down_time, *popt), label = r"Fit of $\frac{N(t)}{N_0} \ = \ erf(\chi) \ - \ \frac{2}{\sqrt{\pi}}\chi e^{-\chi^2}$")
    print("We get a MOT-Temperature of:", "(",popt[0] * 10 ** 6, "+-", np.sqrt(pcov[0][0]) * 10 ** 6,") micro Kelvin")
    plt.title("Fraction of Recaptured Atoms vs. Down Time")
    plt.xlabel("down time [s]")
    plt.ylabel(r"$\frac{N(t)}{N_0}$")
    plt.legend()
    plt.savefig("releaserecap.pdf", format="pdf")
    plt.show()

    diffs = (unp.nominal_values(uarray_Nmax / uarray_N0) - fitfunc(down_time, *popt)) / unp.std_devs(uarray_Nmax / uarray_N0)
    diffs_squared = diffs ** 2
    chi2 = np.sum(diffs_squared)

    n_data_points = len(down_time)
    n_fit_parameters = 1
    n_dof = n_data_points - n_fit_parameters

    print("chi2/ndf = " + str(round(chi2, 2)) + "/" + str(n_dof))
    print(r"So we get chi2_red$ = ", round(chi2, 2)/n_dof)

    return 0
예제 #54
0
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import uncertainties as u
import uncertainties.unumpy as unp

parser = argparse.ArgumentParser()
parser.add_argument("--path", default="./results/theta-simulation/fresnel-theta-simulation.pkl")
args = parser.parse_args()

df = pd.read_pickle(args.path)
# Bin entries by groove number.
bins = np.arange(0.0, 12.5, 1.0)
groups = df.groupby(np.digitize(df.theta, bins))
x = -groups.mean().centroid_x.values
z_r90 = unp.uarray(-groups.mean().z_r90.values, groups.std().z_r90.values)
# z_r90 = unp.uarray(-groups.mean().centroid_z.values, groups.std().centroid_z.values)

f, ax = plt.subplots()
ax.errorbar(x, unp.nominal_values(z_r90), yerr=unp.std_devs(z_r90), fmt='.', label="Simulated $ r_{90}$")

def fit(x, y):
    from ROOT import TF1, TGraphAsymmErrors
    g = TGraphAsymmErrors(len(x))
    for i in xrange(len(x)):
        g.SetPoint(i, x[i], y[i].nominal_value)
        g.SetPointError(i, 0, 0, y[i].std_dev, y[i].std_dev)
    fit = TF1("fit", "-[1]*x*x+[0]", -40, 120)
    fit.SetParNames("z0", "a")
    g.Fit(fit)
    return fit
예제 #55
0
print(R_1_4)

# Import Data
nu_1, U_1, dU_1 = np.genfromtxt("data/data_a_1.txt",unpack=True)
nu_2, U_2, dU_2 = np.genfromtxt("data/data_a_2.txt",unpack=True)
nu_3, U_3, dU_3 = np.genfromtxt("data/data_a_3.txt",unpack=True)
nu_4, U_4, dU_4 = np.genfromtxt("data/data_a_4.txt",unpack=True)

print(len(nu_1))
print(len(nu_2))
print(len(nu_3))
print(len(nu_4))
with open('build/a_data_1.tex', 'w') as f:
	f.write(table([r'$\nu / \si{\kilo\hertz}$', r'$U / \si{\volt}$', 
		r'$\nu / \si{\kilo\hertz}$', r'$U / \si{\volt}$'],
		[nu_1[0:7]/1e3, unp.uarray(U_1[0:7], dU_1[0:7]), 
		nu_1[7:14]/1e3, unp.uarray(U_1[7:14], dU_1[7:14])]
		))
with open('build/a_data_2.tex', 'w') as f:
	f.write(table([r'$\nu / \si{\kilo\hertz}$', r'$U / \si{\volt}$', 
		r'$\nu / \si{\kilo\hertz}$', r'$U / \si{\volt}$'],
		[nu_2[0:9]/1e3, unp.uarray(U_2[0:9], dU_2[0:9]),
		nu_2[9:18]/1e3, unp.uarray(U_2[9:18], dU_2[9:18])]
		))
with open('build/a_data_3.tex', 'w') as f:
	f.write(table([r'$\nu / \si{\kilo\hertz}$', r'$U / \si{\milli\volt}$',
		r'$\nu / \si{\kilo\hertz}$', r'$U / \si{\milli\volt}$'],
		[nu_3[0:10]/1e3, unp.uarray(U_3[0:10], dU_3[0:10])*1e3,
		nu_3[10:20]/1e3, unp.uarray(U_3[10:20], dU_3[10:20])*1e3]
		))
with open('build/a_data_4.tex', 'w') as f:
예제 #56
0
def ab(am,at):
    return (am-at)/at


m_g=107.67
m_gw=465.18#
Tgw=293.40
Tgm=296.63
Tg=352.19

ckz=ck(m_zw,m_z,Tzm,Tzw,Tz)
ckg=ck(m_gw,m_g,Tgm,Tgw,Tg)
#ckg=ck(465.18,107.67,295.63,293.40,352.19)


ckz=unp.uarray(np.average(ckz),np.std(ckz))
Tzm=np.average(Tzm)
print('Abweichung von ckz',ab(noms(ckz),0.23))
print('Abweichung von ckg',ab(ckg,0.715))

print('ckz',ckz)
print('ckg',ckg)
Cz=C(ckz,Molz,az,kz,rhoz,Tzm)
Cg=C(ckg,Molg,ag,kg,rhog,Tgm)


print('Cz',Cz)
print('Cg',Cg)
print('3R',3*8.3144598)

print('Abweichung von 3R z',ab(noms(Cz),3*8.3144598))
decay_rate_calculated = decay_rate(area_under_peak, angle_distribution,
                                   prohability, efficency_calculated,
                                   measurment_time)

print('Gemittelte Aktivität', decay_rate_calculated.mean())

# ########################################################################### #
# #### --- Speicherergebnisse Peak Eigenschaften in eine Tabelle --- ######## #
# ########################################################################### #

l.Latexdocument(
    filename=abs_path('tabs/sb_or_ba/peak_fit_parameter.tex')).tabular(
        data=[
            peak_indexes[0],
            unp.uarray(noms(amplitude_of_peaks), stds(amplitude_of_peaks)),
            unp.uarray(noms(sigma_of_peaks), stds(sigma_of_peaks)),
            unp.uarray(noms(offset_of_peak), stds(offset_of_peak))
        ],
        header=[
            'Kanal / ', r'Amplitude / None ', r'\sigma /\kilo\eV',
            r'\mu / \kilo\eV'
        ],
        places=[0, (1.2, 1.2), (1.2, 1.2), (2.2, 1.2)],
        caption='Regressionsparameter der Peak-Anpassung.',
        label='results_peaks')

l.Latexdocument(
    filename=abs_path('tabs/sb_or_ba/peak_charakteristiken.tex')
).tabular(
    data=[
예제 #58
0
    B_1 = eichfunktion(current, *params)
    print(f'\tB:  {B_1}')
    d_lambda = wellenlaengenAenderung(del_s, delta_s, d_lambda_D)
    delta_mg = g_factor(d_lambda, B_1, lambda_1)
    #  print(f'\tWellenlängenänderung:  {d_lambda}')
    #  print(f'\tDelta_mg:  {delta_mg}')
    #  print(f'\tMittelwert:  {sum(delta_mg)/len(delta_mg)}')
    print(f'\tMittelwert Delta_mg:  {sum(delta_mg)/len(delta_mg)}')

    # save results
    make_table(header= ['$\delta s$ / pixel', '$\Delta s$ / pixel', '$\delta\lambda$ / \pico\meter', '$g$'],
            places= [3.0, 3.0, 2.2, (1.2, 1.2)],
            data = [delta_s, del_s, d_lambda*1e12, delta_mg],
            caption = 'Werte zur Bestimmung des Lande-Faktors für die rote Spektrallinie.',
            label = 'tab:rot_sigma',
            filename = 'build/rot_sigma.tex')

if __name__ == '__main__':

    if not os.path.isdir('build'):
        os.mkdir('build')

    lambda_1 = 643.8e-9  # nano meter
    lambda_2 = 480e-9  # nano meter

    lande_factors()
    d_lambda_1, d_lambda_2 = lummer_gehrke_platte()
    p, e = eichung()
    params = unp.uarray(p, e)
    auswertung_blau(params, d_lambda_2)
    auswertung_rot(params, d_lambda_1)
예제 #59
0
import math
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
from pint import UnitRegistry
import latex as l
import result
#import pandas as pd
r = result.Results()
u = UnitRegistry()
Q_ = u.Quantity

#umrechnung einheiten mit var.to('unit')
# Einheiten für pint:dimensionless, meter, second, degC, kelvin
#beispiel:
a = ufloat(5, 2) * u.meter
b = Q_(unp.uarray([5, 4, 3], [0.1, 0.2, 0.3]), 'ohm')
c = Q_(0, 'degC')

#variabel_1,variabel_2=np.genfromtxt('name.txt',unpack=True)

#Standartabweichung und Mittelwert


def mittel_und_abweichung(messreihe):
    messreihe_einheit = messreihe.units
    mittelwert = sum(messreihe) / len(messreihe)
    abweichung_des_mittelwertes = 1 / (np.sqrt(
        len(messreihe))) * np.std(messreihe)
    mittel_und_abweichung = Q_(
        unp.uarray(mittelwert, abweichung_des_mittelwertes), messreihe_einheit)
    return mittel_und_abweichung
예제 #60
0
#Einlesen der Daten
Ck_a_b_in_nF, Bäuche, fehler_bäuche, v_plus_in_kHz, v_minus_in_kHz, fehler_frequenzen = np.genfromtxt(
    'messdaten_a_b.txt', unpack=True)
Ck_c_in_nF, Delta_t_1_in_ms, Delta_t_2_in_ms, fehler_zeiten = np.genfromtxt(
    'messdaten_c.txt', unpack=True)
L_in_mH = 23.954
C_in_nF = 0.7932
Csp_in_nF = 0.028
f_start_in_kHz = 20.06
f_end_in_kHz = 68.97
f_resonanz_gemessen_in_kHz = 35.65
Fehler_Ck = 0.003
f_res_gemessen = ufloat(35.65, 0.02)

#Messgrößen mit Fehlern
Bäuche = unp.uarray(Bäuche, fehler_bäuche)
v_plus_in_kHz = unp.uarray(v_plus_in_kHz, fehler_frequenzen)
v_minus_in_kHz = unp.uarray(v_minus_in_kHz, fehler_frequenzen)
Delta_t_1_in_ms = unp.uarray(Delta_t_1_in_ms, fehler_zeiten)
Delta_t_2_in_ms = unp.uarray(Delta_t_2_in_ms, fehler_zeiten)

#Kapazitäten mit Fehlern (gerundet auf 3 signifikante Stellen)
Ck_a_b_Fehler_nF = unp.uarray(Ck_a_b_in_nF,
                              np.round(Ck_a_b_in_nF * Fehler_Ck, 3))
Ck_c_Fehler_nF = unp.uarray(Ck_c_in_nF, np.round(Ck_c_in_nF * Fehler_Ck, 3))

#Werte in SI
Ckab = Ck_a_b_Fehler_nF * 10**(-9)
Ckc = Ck_c_Fehler_nF * 10**(-9)
L = L_in_mH * 10**(-3)
C = C_in_nF * 10**(-9)