def data_job_retention(nSelected,nRunOver): """Calculate the retention for a data job""" from uncertainties import ufloat as u from math import sqrt as s nsel = u((nSelected,s(nSelected))) nrun = u((nRunOver,s(nRunOver))) out = nsel/nrun print "(", 100*out, ") %" return out
def mc_job_selection_efficiency(DecProdEff,DecProdEffErr,nSelected,nRunOver): """Calculate the selection efficiency for a MC job""" from uncertainties import ufloat as u from math import sqrt as s e_dpc = u((DecProdEff,DecProdEffErr)) nsel = u((nSelected,s(nSelected))) nrun = u((nRunOver,s(nRunOver))) out = e_dpc*nsel/nrun print "(", 100*out, ") %" return out
time_co2[i].append(array[:,1]) #%% osc_P_ar, osc_T_ar, time_array_ar, fit_ar, fit_err_ar = get_data_fit(P_ar, time_ar) osc_P_co2, osc_T_co2, time_array_co2, fit_co2, fit_err_co2 = get_data_fit(P_co2, time_co2) #%% fit_wErr = [] for i in range(len(fit_ar)): fit_wErr.append([]) for j in range(len(fit_ar[i])): fit_wErr[i].append([]) for k in range(len(fit_ar[i][j])): fit_wErr[i][j].append(u(fit_ar[i][j][k], fit_err_ar[i][j][k])) for i in range(len(fit_co2)): fit_wErr.append([]) for j in range(len(fit_co2[i])): fit_wErr[i+3].append([]) for k in range(len(fit_co2[i][j])): fit_wErr[i+3][j].append(u(fit_co2[i][j][k], fit_err_co2[i][j][k])) fit_wErr_avg = [] #P0, c, k, omega, phi for i in range(len(fit_wErr)): fit_wErr_avg.append([]) for j in range(len(fit_wErr[i])): param = [[], [], [], [], []] for k in range(5):
plt.plot(new_x[29:64], 5.177800237*(new_x[29:64]-0.029637)+0.029637, color = 'tab:red', label = 'Stripping Line') plt.xlabel('X - Liquid Mole Fraction Ethanol') plt.ylabel('Y - Vapor Mole Fraction Ethanol') plt.axis('equal') plt.xticks(np.arange(0,1.1,0.1)) plt.yticks(np.arange(0,1.1,0.1)) plt.xlim(0, 1) plt.ylim(0, 1) plt.grid() plt.legend() #plt.savefig('McCabe_Thiele_R4.png',dpi=300,bbox_inches='tight') #%% bottom = np.array(984.7, 990.6, 989.7, 990.4]) bottomT = [17.1, 15.7, 12.3, 11.9] top = [u(830.4, 1), u(829.4, 1), u(821.6, 1), u(826, 1)] topT = [u(13.9, 0.2), u(16.2, 0.2), u(20.7, 0.2), u(18.6, 0.2)] #%% molfrac = [[], []] molfrac_error = [[],[]] for i in range(4): molfrac[0].append(true_proof((bottomT[i]*9/5)+32, bottom[i].value)[1]) # molfrac[1].append(true_proof((topT[i]*9/5)+32, top[i])[1]) #%% # R = 2 R2_trays = [[0.8312, 0.8951, 0.9593, 0.976],[0.83, 0.9, 0.963, 0.9777]] R2_temp = [[21, 18.8, 17, 15.1],[21.6, 17, 15.6, 14.2]] R2_molfrac = [[], []] for i in range(2):
def num(self, *args): if self.calibration_uncertainties: return u(*args) else: return args[0]