예제 #1
0
def combine_boxes(boxes, img_dim, dist_threshold=15, padding=0):
    """Uses UnionFind to group close-by contours into boxes (disjoint
    connected components).

    Parameters:
    boxes (list(numpy array)): List of numpy arrays of coordinates of a
    box as returned by enclosing_box.
    img_dim (tuple(int)): Tuple of image dimensions.
    dis_threshold (int): Threshold of number of pixels to determine
    whether boxes are too close.
    padding (int): Number of pixels that are padding.

    Return:
    (numpy array): Numpy array of combined boxes.
    """
    n = len(boxes)
    uf = UnionFind(n)

    for i, j in combinations(range(n), 2):
        if closest_distance(boxes[i], boxes[j]) < dist_threshold:
            uf.union(i, j)

    box_groups = [[box for i in group for box in boxes[i]]
                  for group in uf.groups()]
    combined_boxes = [
        enclosing_box(group, img_dim, padding=padding) for group in box_groups
    ]
    filtered_boxes = [x for x in combined_boxes if fits_criteria_box(x)]
    return np.array(filtered_boxes)
예제 #2
0
def accounts_merge_using_union_find(
        accounts: List[List[str]]) -> List[List[str]]:

    uf = UnionFind()
    email_to_name = dict()

    for account in accounts:
        name = account[0]
        for email in account[1:]:
            email_to_name[email] = name
            uf.union(email, account[1])

    return [[email_to_name[pmail]] + sorted(emails)
            for (pmail, emails) in uf.groups().items()]
예제 #3
0
def combine_boxes(boxes, img_dim, dist_threshold=15, padding=0):
    '''
    Uses UnionFind to group close-by contours into boxes (disjoint
    connected components), for example, to combine letters into a text box
    '''
    n = len(boxes)
    uf = UnionFind(n)

    for i, j in combinations(range(n), 2):
        if closest_distance(boxes[i], boxes[j]) < dist_threshold:
            uf.union(i, j)

    box_groups = [[box for i in group for box in boxes[i]]
                  for group in uf.groups()]
    combined_boxes = [
        enclosing_box(group, img_dim, padding=padding) for group in box_groups
    ]
    filtered_boxes = [x for x in combined_boxes if fits_criteria_box(x)]
    return np.array(filtered_boxes)