def test_precision(self): matrix = confusion_matrix(self.one_dimensional_result, self.one_dimensional_expected) actual = precision(matrix) expected = np.array( [Y_AS_Y / (Y_AS_Y + N_AS_Y), N_AS_N / (Y_AS_N + N_AS_N)]) assert (np.abs(actual - expected) < EPSILON).all() matrix = confusion_matrix(self.multi_dimensional_result, self.multi_dimensional_expected) actual = precision(matrix) expected = np.array([ A_AS_A / (A_AS_A + B_AS_A + C_AS_A), B_AS_B / (A_AS_B + B_AS_B + C_AS_B), C_AS_C / (A_AS_C + B_AS_C + C_AS_C) ]) assert (np.abs(actual - expected) < EPSILON).all()
def report_results(confusion: np.ndarray) -> None: """ Report results of a training process :param confusion: Confusion matrix with result of training :return: None (print results measures) """ measures = { "accuracy": accuracy(confusion), "precision": precision(confusion), "recall": recall(confusion), "f1_score": f1_score(confusion) } print("| Clases\t| *Accuracy* | *Precision* | *Recall* | *f1-score* |") print("| --------------- | ---------- | ----------- | -------- | ---------- |") accuracy_measure = round(measures["accuracy"], 4) for index, a_class in enumerate(classes): print("| **{name}** | {accuracy} | {precision} | {recall} | {f1_score} |".format( name=a_class, accuracy=accuracy_measure, precision=round(measures["precision"][index], 4), recall=round(measures["recall"][index], 4), f1_score=round(measures["f1_score"][index], 4)) ) accuracy_measure = "" print("\n")
c = "r" line2 = ax2.plot(costs, label="MSE{}".format(iteration), linestyle="--", linewidth=2.5, c=c) lines = lines + line + line2 ax.set_ylabel("Learning Curve", fontsize=FONT_SIZE) ax.set_xlabel("Epochs", fontsize=FONT_SIZE) ax.set_title("{} Network on Iris\n".format(type_net), fontsize=TITLE_SIZE) ax.grid() ax2.set_ylabel("Cost", fontsize=FONT_SIZE) ax2.grid() labels = [l.get_label() for l in lines] ax2.legend(lines, labels, fontsize=FONT_SIZE, loc="center right") show_matrix(ax3, c_m, (classes, ["Predicted\n{}".format(iris) for iris in classes]), "Confusion Matrix of Test Set\n", FONT_SIZE, TITLE_SIZE) print("Accuracy:\t{}".format(accuracy(c_m))) print("Precision:\t{}".format(precision(c_m))) print("Recall:\t{}".format(recall(c_m))) print("f1-score:\t{}".format(f1_score(c_m))) plt.savefig("../results/{}_on_iris{}.png".format(filename, k_fold))
def train_evaluate(architecture: dict, dataset_name: str) -> NeuralNetwork: """ Train and evaluate a Network :param architecture: Architecture of NeuralNetwork (above) :param dataset_name: Dataset to use :return: Trained Neural Network """ # import dataset dataset = import_data("../data/{}.data".format(dataset_name)) dataset = oversample(dataset) more_info = "(oversample)" labels, encoding = one_hot_encoding(dataset[-1]) classes = list(encoding.keys()) dataset = np.delete(dataset, -1, 0) dataset = np.delete(dataset, [0], 0) # Initialize network logging.info("Input size: {}\tOutput size: {}".format( dataset.shape[0], len(encoding))) network = NeuralNetwork(dataset.shape[0], architecture["INTERNAL_LAYERS"], len(encoding), architecture["ACT_FUNCS"], architecture["LR"]) # Define Trainer trainer = StandardTrainer(dataset, labels.T, TRAIN_SIZE) fig = plt.figure(figsize=FIG_SIZE) fig.subplots_adjust(wspace=0.3) ax = fig.add_subplot(121) ax2 = ax.twinx() ax3 = fig.add_subplot(122) trained, (learn, costs) = trainer.train(network, epochs=EPOCHS, repeat=True) prediction = trainer.evaluate(trained) c_m = confusion_matrix(prediction, trainer.get_labels()) line = ax.plot(learn, label="Learning Curve", linewidth=2.5, c="b") line2 = ax2.plot(costs, label="MSE", linestyle="--", linewidth=2.5, c="r") lines = line + line2 ax.set_ylabel("Learning Curve", fontsize=FONT_SIZE) ax.set_xlabel("Epochs", fontsize=FONT_SIZE) ax.set_title("Network on {}\n".format(dataset_name), fontsize=TITLE_SIZE) ax.grid() ax2.set_ylabel("Cost", fontsize=FONT_SIZE) ax2.grid() labels = [l.get_label() for l in lines] ax2.legend(lines, labels, fontsize=FONT_SIZE, loc="center right") show_matrix( ax3, c_m, (classes, ["Predicted\n{}".format(a_class) for a_class in classes]), "Confusion Matrix of Test Set\n", FONT_SIZE, TITLE_SIZE) measures = { "accuracy": accuracy(c_m), "precision": precision(c_m), "recall": recall(c_m), "f1_score": f1_score(c_m) } print("Summary on {}:\n".format(dataset)) report_results(c_m) plt.savefig("../results/Network_on_{}{}.png".format( dataset_name, more_info)) return trained
labels, _ = one_hot_encoding(dataset) prediction, _ = one_hot_encoding( np.random.choice(["a", "b", "c"], size=labels.shape[0], replace=True)) matrix = confusion_matrix(prediction.T, labels.T) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=FIG_SIZE) show_matrix(ax1, matrix, ([classes[0], classes[1], classes[2]], [ "Predicted\n" + classes[0], "Predicted\n" + classes[1], "Predicted\n" + classes[2] ]), "Confusion matrix of a iris dataset\n", FONT_SIZE, TITLE_SIZE) measures = np.zeros((3, 4)) ax2.matshow(measures, cmap="Greys") to_show = np.zeros((3, 4)) to_show[0][0] = round(accuracy(matrix), 4) to_show[1][0] = np.nan to_show[2][0] = np.nan _precision = precision(matrix) to_show[0][1] = round(_precision[0], 4) to_show[1][1] = round(_precision[1], 4) to_show[2][1] = round(_precision[2], 4) _recall = recall(matrix) to_show[0][2] = round(_recall[0], 4) to_show[1][2] = round(_recall[1], 4) to_show[2][2] = round(_recall[2], 4) _f1_score = f1_score(matrix) to_show[0][3] = round(_f1_score[0], 4) to_show[1][3] = round(_f1_score[1], 4) to_show[2][3] = round(_f1_score[2], 4) annotate( ax2, np.array(to_show), 25, np.array([[ "Accuracy:\n", "Precision\n{}:\n".format(classes[0]),