def compute_loss_cycle2(self):
     P1_P2_cycle = loss.batch_cycle_2(self.P1_P2, self.idx1_P2_P1,
                                      self.batchs)
     P2_P1_cycle = loss.batch_cycle_2(self.P2_P1, self.idx1_P1_P2,
                                      self.batchs)
     P3_P2_cycle = loss.batch_cycle_2(self.P3_P2, self.idx1_P2_P3,
                                      self.batchs)
     P2_P3_cycle = loss.batch_cycle_2(self.P2_P3, self.idx1_P3_P2,
                                      self.batchs)
     P1_P3_cycle = loss.batch_cycle_2(self.P1_P3, self.idx1_P3_P1,
                                      self.batchs)
     P3_P1_cycle = loss.batch_cycle_2(self.P3_P1, self.idx1_P1_P3,
                                      self.batchs)
     self.loss_train_cycleL2_2 = (1 / 6.0) * (
         loss.L2(P1_P2_cycle, self.P1) + loss.L2(P2_P1_cycle, self.P2) +
         loss.L2(P3_P2_cycle, self.P3) + loss.L2(P2_P3_cycle, self.P2) +
         loss.L2(P1_P3_cycle, self.P1) + loss.L2(P3_P1_cycle, self.P3))
예제 #2
0
            # NN in latent space
            P0_latent_list = list(
                map(
                    lambda x: trainer.network.encode(
                        x.transpose(1, 2).contiguous(),
                        x.transpose(1, 2).contiguous()), points_train_list))
            cosine_list = list(
                map(lambda x: loss.cosine(x, P2_latent), P0_latent_list))

            top_k_idx, top_k_values = min_k(cosine_list)
            add("iou_cosine", top_k_idx)

            # Cycle 2
            P0_P2_cycle_list = list(
                map(lambda x, y: loss.batch_cycle_2(x[0], y[3], 1), P0_P2_list,
                    P2_P0_list))
            P0_P2_cycle_list = list(
                map(lambda x, y: loss.L2(x, y), P0_P2_cycle_list,
                    points_train_list))
            top_k_idx, top_k_values = min_k(P0_P2_cycle_list)
            iou_P0_P2_cycle_ours = iou_ours_list[top_k_idx[0]]
            iou_P0_P2_cycle_NN = iou_NN_list[top_k_idx[0]]

            P2_P0_cycle_list = list(
                map(lambda x, y: loss.batch_cycle_2(x[0], y[3], 1), P2_P0_list,
                    P0_P2_list))
            P2_P0_cycle_list = list(
                map(lambda x: loss.L2(x, P2), P2_P0_cycle_list))
            top_k_idx, top_k_values = min_k(P2_P0_cycle_list)
            iou_P2_P0_cycle_ours = iou_ours_list[top_k_idx[0]]
def get_criterion_shape(opt):
    return_dict = {}
    my_utils.plant_seeds(randomized_seed=opt.randomize)

    trainer = t.Trainer(opt)
    trainer.build_dataset_train_for_matching()
    trainer.build_dataset_test_for_matching()
    trainer.build_network()
    trainer.build_losses()
    trainer.network.eval()

    # Load input mesh
    exist_P2_label = True

    try:
        mesh_path = opt.eval_get_criterions_for_shape  # Ends in .txt
        points = np.loadtxt(mesh_path)
        points = torch.from_numpy(points).float()
        # Normalization is done before resampling !
        P2 = normalize_points.BoundingBox(points[:, :3])
        P2_label = points[:, 6].data.cpu().numpy()
    except:
        mesh_path = opt.eval_get_criterions_for_shape  # Ends in .obj
        source_mesh_edge = get_shapenet_model.link(mesh_path)
        P2 = torch.from_numpy(source_mesh_edge.vertices)
        exist_P2_label = False

    min_k = Min_k(opt.k_max_eval)
    max_k = Max_k(opt.k_max_eval)

    points_train_list = []
    point_train_paths = []
    labels_train_list = []
    iterator_train = trainer.dataloader_train.__iter__()

    for find_best in range(opt.num_shots_eval):
        try:
            points_train, _, _, file_path = iterator_train.next()
            points_train_list.append(
                points_train[:, :, :3].contiguous().cuda().float())
            point_train_paths.append(file_path)
            labels_train_list.append(
                points_train[:, :, 6].contiguous().cuda().float())
        except:
            break

    # ========Loop on test examples======================== #
    with torch.no_grad():
        P2 = P2[:, :3].unsqueeze(0).contiguous().cuda().float()
        P2_latent = trainer.network.encode(
            P2.transpose(1, 2).contiguous(),
            P2.transpose(1, 2).contiguous())

        # Chamfer (P0_P2)
        P0_P2_list = list(
            map(
                lambda x: loss.forward_chamfer(trainer.network,
                                               P2,
                                               x,
                                               local_fix=None,
                                               distChamfer=trainer.distChamfer
                                               ), points_train_list))

        # Compute Chamfer (P2_P0)
        P2_P0_list = list(
            map(
                lambda x: loss.forward_chamfer(trainer.network,
                                               x,
                                               P2,
                                               local_fix=None,
                                               distChamfer=trainer.distChamfer
                                               ), points_train_list))

        predicted_ours_P2_P0_list = list(
            map(lambda x, y: x.view(-1)[y[4].view(-1).data.long()].view(1, -1),
                labels_train_list, P2_P0_list))

        if exist_P2_label:
            iou_ours_list = list(
                map(
                    lambda x: miou_shape.miou_shape(x.squeeze().cpu().numpy(
                    ), P2_label, trainer.parts), predicted_ours_P2_P0_list))
            top_k_idx, top_k_values = max_k(iou_ours_list)
            return_dict["oracle"] = point_train_paths[top_k_idx[0]][0]

        predicted_ours_P2_P0_list = list(
            map(lambda x, y: x.view(-1)[y[4].view(-1).data.long()].view(1, -1),
                labels_train_list, P2_P0_list))
        predicted_ours_P2_P0_list = torch.cat(predicted_ours_P2_P0_list)

        # Compute NN
        P2_P0_NN_list = list(
            map(lambda x: loss.distChamfer(x, P2), points_train_list))
        predicted_NN_P2_P0_list = list(
            map(lambda x, y: x.view(-1)[y[3].view(-1).data.long()].view(1, -1),
                labels_train_list, P2_P0_NN_list))
        predicted_NN_P2_P0_list = torch.cat(predicted_NN_P2_P0_list)

        # NN
        NN_chamferL2_list = list(
            map(lambda x: loss.chamferL2(x[0], x[1]), P2_P0_NN_list))
        top_k_idx, top_k_values = min_k(NN_chamferL2_list)
        return_dict["NN_criterion"] = point_train_paths[top_k_idx[0]][0]

        # Chamfer ours
        chamfer_list = list(
            map(lambda x: loss.chamferL2(x[1], x[2]), P2_P0_list))
        top_k_idx, top_k_values = min_k(chamfer_list)
        return_dict["chamfer_criterion"] = point_train_paths[top_k_idx[0]][0]

        # NN in latent space
        P0_latent_list = list(
            map(
                lambda x: trainer.network.encode(
                    x.transpose(1, 2).contiguous(),
                    x.transpose(1, 2).contiguous()), points_train_list))
        cosine_list = list(
            map(lambda x: loss.cosine(x, P2_latent), P0_latent_list))

        top_k_idx, top_k_values = min_k(cosine_list)
        return_dict["cosine_criterion"] = point_train_paths[top_k_idx[0]][0]

        # Cycle 2
        P0_P2_cycle_list = list(
            map(lambda x, y: loss.batch_cycle_2(x[0], y[3], 1), P0_P2_list,
                P2_P0_list))
        P0_P2_cycle_list = list(
            map(lambda x, y: loss.L2(x, y), P0_P2_cycle_list,
                points_train_list))

        P2_P0_cycle_list = list(
            map(lambda x, y: loss.batch_cycle_2(x[0], y[3], 1), P2_P0_list,
                P0_P2_list))
        P2_P0_cycle_list = list(map(lambda x: loss.L2(x, P2),
                                    P2_P0_cycle_list))

        # Cycle 2 both sides
        both_cycle_list = list(
            map(lambda x, y: x * y, P0_P2_cycle_list, P2_P0_cycle_list))
        both_cycle_list = np.power(both_cycle_list, 1.0 / 2.0).tolist()
        top_k_cycle2_idx, top_k_values = min_k(both_cycle_list)
        return_dict["cycle_criterion"] = point_train_paths[
            top_k_cycle2_idx[0]][0]
        pprint.pprint(return_dict)
        return return_dict
예제 #4
0
            chamfer_list = list(map(lambda x: loss.chamferL2(x[1], x[2]), P2_P0_list))
            top_k_idx, top_k_values = min_k(chamfer_list)
            add("iou_chamfer", top_k_idx)

            # NN in latent space
            P0_latent_list = list(
                map(lambda x: trainer.network.encode(x.transpose(1, 2).contiguous(),
                                                     x.transpose(1, 2).contiguous()),
                    points_train_list))
            cosine_list = list(map(lambda x: loss.cosine(x, P2_latent), P0_latent_list))

            top_k_idx, top_k_values = min_k(cosine_list)
            add("iou_cosine", top_k_idx)

            # Cycle 2
            P0_P2_cycle_list = list(map(lambda x, y: loss.batch_cycle_2(x[0], y[3], 1), P0_P2_list, P2_P0_list))
            P0_P2_cycle_list = list(map(lambda x, y: loss.L2(x, y), P0_P2_cycle_list, points_train_list))
            top_k_idx, top_k_values = min_k(P0_P2_cycle_list)
            iou_P0_P2_cycle_ours = iou_ours_list[top_k_idx[0]]
            iou_P0_P2_cycle_NN = iou_NN_list[top_k_idx[0]]

            P2_P0_cycle_list = list(map(lambda x, y: loss.batch_cycle_2(x[0], y[3], 1), P2_P0_list, P0_P2_list))
            P2_P0_cycle_list = list(map(lambda x: loss.L2(x, P2), P2_P0_cycle_list))
            top_k_idx, top_k_values = min_k(P2_P0_cycle_list)
            iou_P2_P0_cycle_ours = iou_ours_list[top_k_idx[0]]
            iou_P2_P0_cycle_NN = iou_NN_list[top_k_idx[0]]

            # Cycle 2 both sides
            both_cycle_list = list(map(lambda x, y: x * y, P0_P2_cycle_list, P2_P0_cycle_list))
            both_cycle_list = np.power(both_cycle_list, 1.0 / 2.0).tolist()
            top_k_cycle2_idx, top_k_values = min_k(both_cycle_list)