예제 #1
0
파일: neon.py 프로젝트: kaltenbe/uhd
 def get_ad9361_lo_lock(self, which):
     """
     Return LO lock status (Boolean!) of AD9361. 'which' must be
     either 'tx' or 'rx'
     """
     assert which in ('rx', 'tx')
     mboard_regs_label = "mboard-regs"
     mboard_regs_control = MboardRegsControl(mboard_regs_label, self.log)
     if which == "tx":
         locked = mboard_regs_control.get_ad9361_tx_lo_lock()
     else:
         locked = mboard_regs_control.get_ad9361_rx_lo_lock()
     return locked
예제 #2
0
class Neon(DboardManagerBase):
    """
    Holds all dboard specific information and methods of the neon dboard
    """
    #########################################################################
    # Overridables
    #
    # See DboardManagerBase for documentation on these fields
    #########################################################################
    pids = [0xe320]
    rx_sensor_callback_map = {
        'ad9361_temperature': 'get_catalina_temp_sensor',
        'rssi': 'get_rssi_sensor',
        'lo_lock': 'get_lo_lock_sensor',
    }
    tx_sensor_callback_map = {
        'ad9361_temperature': 'get_catalina_temp_sensor',
    }
    # Maps the chipselects to the corresponding devices:
    spi_chipselect = {"catalina": 0, "adf4002": 1}
    ### End of overridables #################################################
    # This map describes how the user data is stored in EEPROM. If a dboard rev
    # changes the way the EEPROM is used, we add a new entry. If a dboard rev
    # is not found in the map, then we go backward until we find a suitable rev
    user_eeprom = {
        0: {
            'label': "e0004000.i2c",
            'offset': 1024,
            'max_size': 32786 - 1024,
            'alignment': 1024,
        },
    }

    default_master_clock_rate = 16e6
    MIN_MASTER_CLK_RATE = 220e3
    MAX_MASTER_CLK_RATE = 61.44e6

    def __init__(self, slot_idx, **kwargs):
        super(Neon, self).__init__(slot_idx, **kwargs)
        self.log = get_logger("Neon-{}".format(slot_idx))
        self.log.trace("Initializing Neon daughterboard, slot index %d",
                       self.slot_idx)
        self.rev = int(self.device_info['rev'])
        self.log.trace("This is a rev: {}".format(chr(65 + self.rev)))
        # These will get updated during init()
        self.master_clock_rate = None
        # Predeclare some attributes to make linter happy:
        self.catalina = None
        self.eeprom_fs = None
        self.eeprom_path = None
        # Now initialize all peripherals. If that doesn't work, put this class
        # into a non-functional state (but don't crash, or we can't talk to it
        # any more):
        try:
            self._init_periphs()
            self._periphs_initialized = True
        except Exception as ex:
            self.log.error("Failed to initialize peripherals: %s", str(ex))
            self._periphs_initialized = False

    def _init_periphs(self):
        """
        Initialize power and peripherals that don't need user-settings
        """
        self.log.debug("Loading C++ drivers...")
        # Setup the ADF4002
        adf4002_spi = lib.spi.make_spidev(
            str(self._spi_nodes['adf4002']),
            1000000,  # Speed (Hz)
            0  # SPI mode
        )
        self.log.trace("Initializing ADF4002.")
        from usrp_mpm.periph_manager.e320 import E320_DEFAULT_INT_CLOCK_FREQ
        self.adf4002 = ADF400x(adf4002_spi,
                               freq=E320_DEFAULT_INT_CLOCK_FREQ,
                               parent_log=self.log)
        # Setup Catalina / the Neon Manager
        self._device = lib.dboards.neon_manager(self._spi_nodes['catalina'])
        self.catalina = self._device.get_radio_ctrl()
        self.log.trace("Loaded C++ drivers.")
        self._init_cat_api(self.catalina)
        self.eeprom_fs, self.eeprom_path = self._init_user_eeprom(
            self._get_user_eeprom_info(self.rev))

    def _init_cat_api(self, cat):
        """
        Propagate the C++ Catalina API into Python land.
        """
        def export_method(obj, method):
            " Export a method object, including docstring "
            meth_obj = getattr(obj, method)

            def func(*args):
                " Functor for storing docstring too "
                return meth_obj(*args)

            func.__doc__ = meth_obj.__doc__
            return func

        self.log.trace("Forwarding AD9361 methods to Neon class...")
        for method in [
                x for x in dir(self.catalina)
                if not x.startswith("_") and \
                        callable(getattr(self.catalina, x))]:
            self.log.trace("adding {}".format(method))
            setattr(self, method, export_method(cat, method))

    def _get_user_eeprom_info(self, rev):
        """
        Return an EEPROM access map (from self.user_eeprom) based on the rev.
        """
        rev_for_lookup = rev
        while rev_for_lookup not in self.user_eeprom:
            if rev_for_lookup < 0:
                raise RuntimeError(
                    "Could not find a user EEPROM map for "
                    "revision %d!", rev)
            rev_for_lookup -= 1
        assert rev_for_lookup in self.user_eeprom, \
                "Invalid EEPROM lookup rev!"
        return self.user_eeprom[rev_for_lookup]

    def _init_user_eeprom(self, eeprom_info):
        """
        Reads out user-data EEPROM, and intializes a BufferFS object from that.
        """
        self.log.trace("Initializing EEPROM user data...")
        eeprom_paths = get_eeprom_paths(eeprom_info.get('label'))
        self.log.trace(
            "Found the following EEPROM paths: `{}'".format(eeprom_paths))
        eeprom_path = eeprom_paths[self.slot_idx]
        self.log.trace("Selected EEPROM path: `{}'".format(eeprom_path))
        user_eeprom_offset = eeprom_info.get('offset', 0)
        self.log.trace("Selected EEPROM offset: %d", user_eeprom_offset)
        user_eeprom_data = open(eeprom_path, 'rb').read()[user_eeprom_offset:]
        self.log.trace("Total EEPROM size is: %d bytes", len(user_eeprom_data))
        return BufferFS(user_eeprom_data,
                        max_size=eeprom_info.get('max_size'),
                        alignment=eeprom_info.get('alignment', 1024),
                        log=self.log), eeprom_path

    def init(self, args):
        if not self._periphs_initialized:
            error_msg = "Cannot run init(), peripherals are not initialized!"
            self.log.error(error_msg)
            raise RuntimeError(error_msg)
        master_clock_rate = \
            float(args.get('master_clock_rate',
                           self.default_master_clock_rate))
        assert self.MIN_MASTER_CLK_RATE <= master_clock_rate <= self.MAX_MASTER_CLK_RATE, \
            "Invalid master clock rate: {:.02f} MHz".format(
                master_clock_rate / 1e6)
        master_clock_rate_changed = master_clock_rate != self.master_clock_rate
        if master_clock_rate_changed:
            self.master_clock_rate = master_clock_rate
            self.log.debug("Updating master clock rate to {:.02f} MHz!".format(
                self.master_clock_rate / 1e6))
        # Some default chains on -- needed for setup purposes
        self.catalina.set_active_chains(True, False, True, False)
        self.set_catalina_clock_rate(self.master_clock_rate)

        return True

    def get_user_eeprom_data(self):
        """
        Return a dict of blobs stored in the user data section of the EEPROM.
        """
        return {
            blob_id: self.eeprom_fs.get_blob(blob_id)
            for blob_id in iterkeys(self.eeprom_fs.entries)
        }

    def set_user_eeprom_data(self, eeprom_data):
        """
        Update the local EEPROM with the data from eeprom_data.

        The actual writing to EEPROM can take some time, and is thus kicked
        into a background task. Don't call set_user_eeprom_data() quickly in
        succession. Also, while the background task is running, reading the
        EEPROM is unavailable and MPM won't be able to reboot until it's
        completed.
        However, get_user_eeprom_data() will immediately return the correct
        data after this method returns.
        """
        for blob_id, blob in iteritems(eeprom_data):
            self.eeprom_fs.set_blob(blob_id, blob)
        self.log.trace("Writing EEPROM info to `{}'".format(self.eeprom_path))
        eeprom_offset = self.user_eeprom[self.rev]['offset']

        def _write_to_eeprom_task(path, offset, data, log):
            " Writer task: Actually write to file "
            # Note: This can be sped up by only writing sectors that actually
            # changed. To do so, this function would need to read out the
            # current state of the file, do some kind of diff, and then seek()
            # to the different sectors. When very large blobs are being
            # written, it doesn't actually help all that much, of course,
            # because in that case, we'd anyway be changing most of the EEPROM.
            with open(path, 'r+b') as eeprom_file:
                log.trace("Seeking forward to `{}'".format(offset))
                eeprom_file.seek(eeprom_offset)
                log.trace("Writing a total of {} bytes.".format(
                    len(self.eeprom_fs.buffer)))
                eeprom_file.write(data)
                log.trace("EEPROM write complete.")

        thread_id = "eeprom_writer_task_{}".format(self.slot_idx)
        if any([x.name == thread_id for x in threading.enumerate()]):
            # Should this be fatal?
            self.log.warn("Another EEPROM writer thread is already active!")
        writer_task = threading.Thread(
            target=_write_to_eeprom_task,
            args=(self.eeprom_path, eeprom_offset, self.eeprom_fs.buffer,
                  self.log),
            name=thread_id,
        )
        writer_task.start()
        # Now return and let the copy finish on its own. The thread will detach
        # and MPM won't terminate this process until the thread is complete.
        # This does not stop anyone from killing this process (and the thread)
        # while the EEPROM write is happening, though.

    def get_master_clock_rate(self):
        " Return master clock rate (== sampling rate) "
        return self.master_clock_rate

    def update_ref_clock_freq(self, freq):
        """Update the reference clock frequency"""
        self.adf4002.set_ref_freq(freq)

    ##########################################################################
    # Sensors
    ##########################################################################
    def get_ad9361_lo_lock(self, which):
        """
        Return LO lock status (Boolean!) of AD9361. 'which' must be
        either 'tx' or 'rx'
        """
        self.mboard_regs_label = "mboard-regs"
        self.mboard_regs_control = MboardRegsControl(self.mboard_regs_label,
                                                     self.log)
        if which == "tx":
            locked = self.mboard_regs_control.get_ad9361_tx_lo_lock()
        elif which == "rx":
            locked = self.mboard_regs_control.get_ad9361_rx_lo_lock()
        else:
            locked = False
        return locked

    def get_lo_lock_sensor(self, which):
        """
        Get sensor dict with LO lock status
        """
        self.log.trace("Reading LO Lock.")
        lo_locked = self.get_ad9361_lo_lock(which)
        return {
            'name': 'ad9361_lock',
            'type': 'BOOLEAN',
            'unit': 'locked' if lo_locked else 'unlocked',
            'value': str(lo_locked).lower(),
        }

    def get_catalina_temp_sensor(self, _):
        """
        Get temperature sensor reading of Catalina.
        """
        # Note: the unused argument is channel
        self.log.trace("Reading Catalina temperature.")
        return {
            'name': 'ad9361_temperature',
            'type': 'REALNUM',
            'unit': 'C',
            'value': str(self.catalina.get_temperature())
        }

    def get_rssi_val(self, which):
        """
        Return the current RSSI of `which` chain in Catalina
        """
        return self.catalina.get_rssi(which)

    def get_rssi_sensor(self, chan):
        """
        Return a sensor dictionary containing the current RSSI of `which` chain in Catalina
        """
        which = 'RX' + str(chan + 1)
        return {
            'name': 'rssi',
            'type': 'REALNUM',
            'unit': 'dB',
            'value': str(self.get_rssi_val(which)),
        }

    def set_catalina_clock_rate(self, rate):
        """
        Async call to catalina set_clock_rate
        """
        self.log.trace("Setting Clock rate to {}".format(rate))
        async_exec(lib.ad9361, "set_clock_rate", self.catalina, rate)
        return rate

    def catalina_tune(self, which, freq):
        """
        Async call to catalina tune
        """
        self.log.trace("Tuning {} {}".format(which, freq))
        async_exec(lib.ad9361, "tune", self.catalina, which, freq)
        return self.catalina.get_freq(which)