def update(): opt.data = ops.join(opt.dataset_root, 'features') opt.gt = ops.join(opt.dataset_root, 'groundTruth') opt.output_dir = ops.join(opt.dataset_root, 'output') opt.mapping_dir = ops.join(opt.dataset_root, 'mapping') dir_check(opt.output_dir) opt.f_norm = False if torch.cuda.is_available(): opt.device = 'cuda' opt.embed_dim = 30 if not opt.load_model: opt.lr = 1e-3 opt.epochs = 30 if opt.model_name == 'nothing': opt.load_embed_feat = True update_opt_str() logger = path_logger() vars_iter = list(vars(opt)) for arg in sorted(vars_iter): logger.debug('%s: %s' % (arg, getattr(opt, arg)))
def update(): opt.data = ops.join(opt.dataset_root, 'features') opt.gt = ops.join(opt.dataset_root, 'groundTruth') opt.output_dir = ops.join(opt.dataset_root, 'output') opt.mapping_dir = ops.join(opt.dataset_root, 'mapping') dir_check(opt.output_dir) opt.f_norm = True if torch.cuda.is_available(): opt.device = 'cuda' if opt.global_pipe: opt.embed_dim = 30 else: opt.embed_dim = 20 if not opt.load_model: if opt.global_pipe: opt.lr = 1e-4 else: opt.lr = 1e-4 opt.epochs = 60 opt.bg = False # YTI argument opt.gr_lev = '' # 50Salads argument if opt.model_name == 'nothing': opt.load_embed_feat = True update_opt_str() logger = path_logger() vars_iter = list(vars(opt)) for arg in sorted(vars_iter): logger.debug('%s: %s' % (arg, getattr(opt, arg)))
def all_actions(actions): return_stat_all = None lr_init = opt.lr for action in actions: opt.subaction = action if not opt.resume: opt.lr = lr_init update_opt_str() return_stat_single = temp_embed() return_stat_all = join_return_stat(return_stat_all, return_stat_single) logger.debug(return_stat_all) parse_return_stat(return_stat_all)