예제 #1
0
class LibriSequence:
    def __init__(self):
        self.path = config.path
        self.specpath = config.specpath
        self.ls = LibriSpeech()
        self.ls.load()
        self.batchsize = 128
    
    def sequence(self, type="train"):
        array = self.ls.info[type][::-1]
        def get(ix):
            reader,book,i = array[ix]
            file = self.ls.data[reader][book][i]
            buf, _ = sf.read(join(self.path, file['path']))
            trans = file['trans']
            wb = whole_buffer()
            wb.params.spectrum_range = config.librispeech_range
            return trans, wb.all(buf)
        def get2(ix):
            reader,book,i = array[ix]
            file = self.ls.data[reader][book][i]
            path = file['path']
            if path.endswith(".flac"):
                path = path[:-5] + ".npy"
            buf = numpy.load(join(self.specpath, path)).astype(numpy.float32)/4096
            return file['trans'], buf
        return SequenceFromLibriSpeech(array, self.batchsize, get2)
예제 #2
0
def _random_test_buf():
    ls = LibriSpeech()
    ls.load()
    file = ls.uniform_test()
    trans = file['trans']
    fn = join(config.path, file['path'])
    buf = _buf_from_file(fn)
    buf = _buffer_block([buf])
    return trans, buf
예제 #3
0
def convert_all_flac():
    path = config.path
    dest = "../speechify_dat/spectrogram"
    ls = LibriSpeech()
    ls.load()
    f = FilesToSpectrogram()
    for reader, r_ in ls.data.items():
        mkdir(dest, reader)
        for book, b_ in r_.items():
            mkdir(dest, reader, book)
            for i, file in enumerate(b_):
                npzf = join(dest, reader, book, "%s-%s-%04d.npy" % (reader, book, i))
                print("Creating %s" % npzf)
                f.write_out_spectrogram(npzf, join(path, file['path']))
예제 #4
0
class Sampler:
    def __init__(self, home=False):
        self.path = config.path
        self.ls = LibriSpeech()
        self.ls.load()
        self.wb = whole_buffer()
        self.wb.params.spectrum_range = config.librispeech_range
    
    def rand(self):
        file = self.ls.uniform_train() #file = self.ls.uniform_random()
        buf, _ = sf.read(join(self.path, file['path']))
        return file, self.wb.all(buf)
    
    def whatev(self):
        pass
예제 #5
0
class LibriSequence:
    def __init__(self):
        self.path = config.path
        self.ls = LibriSpeech()
        self.ls.load()
        self.batchsize = 4
    
    def sequence(self, type="train"):
        def get(ix):
            reader,book,i = self.ls.info[type][ix]
            file = self.ls.data[reader][book][i]
            buf, _ = sf.read(join(self.path, file['path']))
            trans = file['trans']
            wb = whole_buffer()
            wb.params.spectrum_range = config.librispeech_range
            return trans, wb.all(buf)
        return SequenceFromLibriSpeech(self.ls.info[type], self.batchsize, get)
예제 #6
0
 def __init__(self, home=False):
     self.path = config.path
     self.ls = LibriSpeech()
     self.ls.load()
     self.wb = whole_buffer()
     self.wb.params.spectrum_range = config.librispeech_range
예제 #7
0
from util.data import LibriSpeech

ls = LibriSpeech()
ls.make("../speechify_dat/combined")
ls.train_test_split()
ls.dump()
예제 #8
0
 def __init__(self):
     self.path = config.path
     self.ls = LibriSpeech()
     self.ls.load()
     self.batchsize = 4